
«PORT DOCUNIEJÜIATION PAGE OMB No. 0704-0188

Public reporting burden for tbit collodion of informton h eso'meted to avenge 1 hour per response, including the time for reviewing instruct'ora, eearching slitting data «one«, gathering and maintaining the data needed, and completing and
reviewing the collection of inforrmton. Sand comment! regarding thii burden estimate or any other erpect of mil collection of infonration, including ruggeitinn for reducing this burden, to Wathington Headquarters Service«, Directorate for
Inforrmtum Operators and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, end to the Office of Management end Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

7 August 1998

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

A CAK METHODOLOGY FOR KNOWLEDGE ASSISTED DESIGN

6. AUTHOR(S)

Paul A. Hey

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Purdue University

8. PERFORMING ORGANIZATION
REPORT NUMBER

98-050

S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With 35-205/AFTT Sup 1

12b. DISTRIBUTION CODE

13. AB STRACT /Maximum 200 words!

14. SUBJECT TERMS 15. NUMBER OF PAGES

91
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

IB. SECURITY CLASSIFICATION
OF THIS PAGE

18. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) EG
Prescribed by ANSI Std. 239.18
~ ' ' '» Perform Pro, WHSIHOA, Oct 94

A CAD METHODOLOGY FOR KNOWLEDGE ASSISTED DESIGN

IfllC QUALITY INSPECTED i

A Thesis
Submitted to the Faculty

of

Purdue University

by

Paul A. Hey

In Partial Fulfillment of the
Requirements for the Degree

of

Master of Science

December 1997

u

To Ruth

Ill

ACKNOWLEDGEMENTS

The successful completion of this work would not have been possible without the

guidance, assistance, and support of many people and organizations. Although the mere

mention of their name does not fully express the gratitude I hold for them, I would like to

express my appreciation for those who helped me survive this experience.

First and foremost I must thank my advisor Professor David C. Anderson for his

advice, guidance, and friendship throughout this process. His dedication to learning and

development of a first-class research facility have made this an experience I will always

cherish and never forget. I would also like to thank the other members of my advisory

committee, Professors T. C. Chang and K. Ramani. I must also extend my thanks to

Professor Warren Waggenspack of Louisiana State University, a former CADLABer who

introduced me to computer-aided design, Purdue, and Professor Anderson.

I gratefully acknowledge the United States Air Force Institute of Technology (AFIT)

for accepting me as a Second Lieutenant fresh out of college to pursue my Masters Degree

in Mechanical Engineering. In particular, I thank my program managers Captain Richard

Baker and Lieutenant Scott Naylor, and the Purdue AFROTC staff for helping to keep my

Air Force life in order.

Many thanks to the staff of the Center for Collaborative Manufacturing, Dr. Nancy

Bulger for giving me a temporary home, and Pat Smith, Leah Peffley, and Barbra Thayer

for letting me fix their computers in exchange for mints, sandwiches, and great

conversation. The support I received under grant EEC-9402533 to the Center for

Collaborative Manufacturing made it possible for me to be accepted into AFIT's

Scholarship, Fellowship, and Grant Program. I am also thankful to the staff of the

IV

Mechanical Engineering Graduate School Office, Carol Wolfe, Chris Kitterman, and Paul

Neulieb for keeping my academics issues in order and knowing how to fill out those pesky

registration forms.

I would also like to thank Cummins Engine Company, for their contributions to this

research which allowed us to apply our ideas to a real-world problem. Special thanks go to

Joe Mickel for helping establish the collaboration and Joy Lindsay, Mike Marthaler, Dave

Richter, and Jim Fleming for teaching me about the flywheel and answering my many

questions.

It has been a pleasure working with the other students and staff in the CADLAB,

David's B. G. and H., Roger, Joe, Percy, Mark, Mike, Charles and Rajaraman. Without

their help and friendship, I could not have complete this work or learned how to excel at so

many computer games. I would also like to thank my fellow AFIT students, Captain

Monty Greer, Captain Drew Causey and Major Mark Knoff who are friends and, along

with the CADLAB students, managed to survive my talent for twisting ankles on the

basketball court.

Finally, I am grateful to my family whose support and guidance kept me going. My

parents, George and Linda Hey, and my wife's parents, Norman and Elaine Davidson,

provided moral support along the way. My dogs, Keeper and Vagrant, deserve thanks for

getting me to occasionally walk in the park after the long days of deep thought and

programming. And, most importantly, I would like to thank my wife, Ruth. I am forever

grateful for her continuous love and support, especially as the hours grew longer and our

time together shorter. Without her, I could not imagine where I would be.

TABLE OF CONTENTS

Page

LISTOFTABLES vii

LIST OF FIGURES vffl

ABSTRACT x

CHAPTER 1: INTRODUCTION 1
1.1 Integrating Engineering Knowledge 2
1.2 Research Objectives 4
1.3 Thesis Overview 5

CHAPTER 2: BACKGROUND AND PAST RESEARCH 6
2.1 Artificial Intelligence in Design 6

2.1.1 Knowledge-Based Expert Systems 7
2.1.2 Model-Based Reasoning 9
2.1.3 Case-Based Reasoning 11
2.1.4 Blackboard Architecture 13
2.1.5 Hybrid Systems 16
2.1.6 Commercial Packages 16

2.2 Interactive Design Assistance 17
2.3 Engineering Design Knowledge 19
2.4 Product Models 21

2.4.1 Model Decomposition 22
2.4.2 Features 22

2.5 A Foundation for Knowledge Assisted Design 24

CHAPTER 3: REPRESENTING ENGINEERING KNOWLEDGE FOR DESIGN 25
3.1 The Product Model 25

3.1.1 The Feature-Based Model Hierarchy 26
3.1.1.1 Feature Geometry 29
3.1.1.2 Feature Positioning 32

3.1.2 Featurizing 39
3.2 The Knowledge 40

3.2.1 Knowledge Sources , 41
3.2.2 Developing Domain Knowledge Sources 43
3.2.3 Designer Interaction 45

3.2.3.1 Interactive 45

VI

Page

3.2.3.2 Automated 46

CHAPTER 4: KNOWLEDGE ASSISTED DESIGN 48
4.1 The Knowledge Assisted Design Environment 48

4.1.1 Feature-Based Design Environment 50
4.1.2 Design Assistant 51

4.2 System Interactions During the Design Process 53
4.2.1 Instantiating a Model 53
4.2.2 Building the Model 55

4.2.2.1 Start-Up Feature Modification 55
4.2.2.2 Feature Modification 56

4.3 Design Process Control —61

CHAPTER 5: AN APPLIACTION OF KNOWLEDGE ASSISTED DESIGN FOR
FLYWHEELS 64
5.1 The Design Environment 64
5.2 The Design Domain 66

5.2.1 Flywheel Features 67
5.2.2 Flywheel Knowledge Sources 68

5.3 The Flywheel Design Process 72
5.3.1 Start-Up Feature Modification 73
5.3.2 Feature Modification 74
5.3.3 Variable Geometry Feature Modification 78

CHAPTER 6: CONCLUSION 81
6.1 Future Research and Development 82

LIST OF REFERENCES 85

Vll

LIST OF TABLES

Table Page

3-1 Knowledge Source Types 44

vm

LIST OF FIGURES

Figure Page

1-1 Conventional CAD Methodology 2
1-2 Knowledge Assisted Design Methodology 4
2-1 The knowledge-based expert system structure 7
2-2 Case-Based Design Framework 12
2-3 The blackboard system framework 14
2-4 Designer Interaction Paradigms 18
3-1 Flywheel Example of a Model Hierarchy 27
3-2 The Feature Hierarchy 30
3-3 Web Relief Example of a Variable Geometric Feature 31
3-4 Feature Handles 32
3-5 Positioning Geometric Elements Within Features 33
3-6 Attach Positioning Relation 34
3-7 Positioning Extension of the Feature Hierarchy 34
3-8 Horizontal and Vertical Positioning Relations Format 35
3-9 Positioning Geometric Entities for Independent Dimension Features 36
3-10 Dependency Declaration Format 37
3-11 Web Relief Example of Dependent Feature Positioning 38
3-12 Pseudo-Code for Determining Global Handle Position 39
3-13 An Example Knowledge Source 42
3-14 Knowledge Source Dialog Definitions 46
4-1 Framework for the Knowledge Assisted Design Environment 49
4-2 Depth First Knowledge Source Action Traversal 58
4-3 Defining Variable Geometry 59
4-4 Web Relief Example for Defining Feature Geometry 60
4-5 Infinite Action Loop 61
5-1 The Graphical User Interface 65
5-2 Flywheel Features 68
5-3 Source Code for Hub Positioning Knowledge Source 69
5-4 Java Source Code for Parameter Modification Knowledge Source 71

IX

Figure Page
5-5 Crankshaft Mounting Hole Clearance (Courtesy of Cummins Engine

Companyjnc.) 72
5-6 Domain Specification and Dynamic Knowledge Source and Feature Loading...
 72

5-7 Start-Up Feature Modification 73
5-8 Knowledge Source Presentation Dialog 74
5-9 Rule Violation Explanation Dialog 75
5-10 Graphical Presentation of Features 76
5-11 Puller Hole Position Modification 77
5-12 Clutch Edit Dialog 78
5-13 Web Relief Geometry Specification 79
5-14 Three-Dimensional, Two-Dimensional, and Textual Model Visualization 80

ABSTRACT

Hey, Paul Andrew. M.S.M.E., Purdue University, December 1997. A CAD Methodology
for Knowledge Assisted Design. Major Professor: David C. Anderson, School of
Mechanical Engineering.

Modern computer-aided design (CAD) systems have developed into integral support

tools for the product design and development process. Designers must, however, draw

upon experiential engineering knowledge such as past experiences, specific design rules

and procedures, and heuristic reasoning just as before the advent of CAD. This work

develops a methodology for integrating experiential engineering knowledge in an

interactive CAD environment that serves as a knowledgeable design assistant and supports

a design process controlled by the designer.

The knowledge assisted design environment is an object-oriented, domain independent

framework based on a blackboard architecture that incorporates a feature-based design

environment with multiple, autonomous knowledge sources. The system can be utilized

for any domain for which a set of features and knowledge sources have been defined. The

knowledge sources provide design assistance by reacting opportunistically to a developing

design solution and by presenting advice interactively to the designer. The object-oriented

knowledge and hierarchical, feature-based model representations are presented along with

the design environment and its functionality. The methodology is applied to the industrial

application of engine flywheel design.

CHAPTER 1

INTRODUCTION

Design is a cognitive process that requires a designer to apply both past experience and

general engineering knowledge to achieve a completed product. Since the advent of

computer-aided design (CAD) in the early 1960's, the computer has become an integral

part of the product design and development process. Early CAD systems provided the

capability to create two-dimensional engineering drawings to document a completed

design. Using modern CAD systems, however, a designer can a construct a sophisticated

three-dimensional solid model of the design artifact and perform complex engineering

analyses on that model. These advances have significantly lessened the costs incurred

during the design process by reducing the number of design cycle iterations to arrive at a

completed design.

Despite the utility of today's conventional CAD systems, their capabilities fall short of

the original vision of the computer's role in the design process. Regarded as one of the first

CAD systems, Sutherland's Sketchpad [SUTH63] sparked discussion of how the computer

would support designers in the future. The systems were envisioned to act as intelligent

design assistants and interactive support tools that would dynamically assist the designer

throughout the design process. Conventional CAD systems, however, have only partially

fulfilled that goal. The systems serve as sophisticated replacements for the slide-rules and

drafting tables of the past and, because they are designed to support a wide range of

engineering domains, inherently restrict the amount of design assistance they can provide.

Rather than actively assisting the designer by playing an integral role in the design

process, modern CAD systems have developed into geometric modeling and analysis tools

that only partially support the design process. As shown in Figure 1-1, the designer must

draw upon experiential engineering knowledge such as past experiences, specific design

rules and procedures, and heuristic reasoning just as before the advent of CAD.

Experiential
Engineering-
Knowledge

D
e
s
i
o o
n
e
r

Conventional
CAD
Tools

Final Design

Figure 1-1. Conventional CAD Methodology

1.1 Integrating Engineering Knowledge

To move CAD closer to its original intent of serving as both support tool and

intelligent design assistant, the design systems must be refined to include representations

of low level engineering information, such as points and lines, and high level engineering

information, such as material properties and functional properties, from which they can

reason to provide the envisioned design assistance. Incorporating engineering knowledge

into an interactive design environment provides the basis for developing a CAD system

that serves as a knowledgeable design assistant. The environment will also serve as an

engineering knowledge repository by maintaining important design rules and heuristics

long after the designer responsible for contributing the design knowledge has left the

organization.

The requirements for the successful integration of engineering knowledge fall under

three main categories: the product model, the design knowledge, and the design

environment. First, the model of the design artifact must contain high level engineering

content that allows the designer to express the engineering characteristics of the design

beyond geometry alone. The designer must be able to accurately express the engineering

attributes of the design model using terminology familiar to, and appropriate for, the

design domain in which the designer is working. At the end of the design process, the

model must also exist as a complete, stand-alone entity that is independent of the process

that created it.

Second, the representation of the design knowledge must be developed to interact with

the model to provide active assistance during the design process. The knowledge must also

express both the geometric and non-geometric engineering attributes of the design artifact

and the design process in a terminology familiar to the designer. The knowledge

representation must be adaptable to the varied knowledge utilized during the design

process, and it must be developed to allow a designer to easily add new engineering

knowledge to the pool of domain knowledge without the involvement of an outside source

and a detailed understanding of the underlying design system functionality.

Finally, a design environment must be developed in which the designer and the

engineering knowledge can interact cooperatively to arrive at a satisfactory design. Most

previous attempts at integrating experiential engineering knowledge and conventional

CAD methodologies have resulted in automated, knowledge-based systems developed for

specific domains that required the designer to provide only the initial design specifications

for the design process to proceed. While automated design systems have proven to be

successful in design domains where there is very little creativity and variety in the design

process, the majority of engineering design fall outside that category. Attempts at

automating a design process that involves any human cognitive capabilities have proven to

have only limited applicability. Therefore, the design environment must be developed such

that the designer is in complete control of the design process and the engineering

knowledge provides interactive design assistance during the design process.

1.2 Research Objectives

The objective of this research is to develop a computer-aided design methodology for

knowledge assisted design, as shown in Figure 1-2, that integrates engineering knowledge

in an interactive design environment that serves as an interactive design assistant and

dynamically supports a design process controlled by the designer. The goal is to develop a

domain-independent framework that can be applied to varied domains by adding domain

specific engineering knowledge to the design environment, as opposed to a general design

system that can be used for any domain of engineering design.

D
e
s
i
a o
n
e
r

Knowledge
Assisted
Design

Environment
Final Design

Figure 1-2. Knowledge Assisted Design Methodology

This primary goal can be divided into three tasks. First, a product model must be

developed that allows the designer to adequately represent both the geometric and non-

geometric attributes of an evolving design solution. The model structure must be easily

extensible and sufficiently general to support as broad a range of domains as possible, and

it must support interaction with the engineering knowledge to provide design assistance

that actively supports the design process. Second, a knowledge representation must be

developed that can also be easily applied to varied design domains and accurately

represent the wide range of engineering knowledge utilized during the design process.

Finally, a domain independent design system framework must be developed that

incorporates the designer, the model, and the knowledge in an environment that allows the

designer to dictate the process by which a product model is constructed while receiving

dynamic, interactive design assistance from the engineering knowledge.

1.3 Thesis Overview

Chapter Two presents a discussion of past research efforts in the knowledge and model

representation techniques and the integration of engineering knowledge and conventional

CAD methodologies. The model and knowledge representations implemented for this

research are discussed in Chapter Three. Chapter Four presents the framework for

integrating these representations for knowledge assisted design. Chapter Five presents a

prototype knowledge assisted design system applied to the specific domain of engine

flywheel design. This system was developed for an actual industrial application to provide

design assistance using Society of Automotive Engineers (SAE), International

Organization for Standardization (ISO), and corporate design standards. Finally, Chapter

Six provides concluding remarks and directions for future research.

CHAPTER 2

BACKGROUND AND PAST RESEARCH

An examination of the past research efforts in related fields provides the background

necessary to better understand the pertinent issues of developing a methodology for

knowledge assisted design. The investigation of developing intelligent CAD systems for

design assistance has been ongoing since computers were introduced into the realm of

engineering design. Much of the research was directed towards the integration of

engineering knowledge into CAD systems and the appropriate means to represent the

engineering knowledge for the design environments. This chapter reflects on those

previous efforts and identifies the key research issues for the development of a knowledge

assisted design methodology.

2.1 Artificial Intelligence in Design

The first attempts at developing CAD systems that drew upon experiential engineering

knowledge occurred during the growth of Artificial Intelligence (AI) in the late 1970's. As

computers became more prevalent and powerful, a concerted research effort investigated

the development of computer programs that behaved and performed actions like humans.

AI offered CAD developers the tools to reason about engineering information in manners

previously unavailable. The AI systems operated using sophisticated symbolic reasoning

techniques and were developed in symbolic processing languages such as LISP and

Prolog. These systems exhibited limited success and are still in use today primarily in

7

automated design and diagnostic systems. Despite their inherent trend towards design

automation, the AI methodologies highlight some of the key aspects and provide some of

the tools necessary for developing a useful design assistant system.

2.1.1 Knowledge-Based Expert Systems

The first AI systems used in design were knowledge-based expert systems (KBES),

which attempt to integrate heuristic reasoning and general domain expertise into computer

programs that behave as experts in their respective domain [AKMA94]. Researchers

hypothesized that human experts reason from a set of learned rules and guidelines to arrive

at a final design. KBES attempted to mimic this human reasoning process and offered

automated design support.

Working
Memory

Inference j (Knowledge
Engine f* I Base

Figure 2-1. The knowledge-based expert system structure

The basic structure of the KBES, as shown in Figure 2-1, consists of three

components: the knowledge base, the inference engine, and the working memory. The

design process is controlled by the application of design rules and processes stored in the

knowledge base. The inference engine contains the reasoning mechanisms by which the

knowledge base is searched and specific rules are applied to answer queries concerning the

design solution as it develops in the working memory. The distinctly separate inference

engine and knowledge base allow for domain independent KBES shells that only required

a new knowledge base to perform design in a particular domain [DIX095].

8

KBES research and development concentrated in two areas: knowledge acquisition

and inference engine reasoning algorithms. Knowledge acquisition, the gathering and

coding of domain-specific rules, evolved into a very sophisticated process. Specialized

knowledge engineers interviewed experts in the specific design domain, and attempted to

acquire all of the appropriate rules and actions required to achieve a particular design. As

the KBES moved from the beginning stages of addressing example design problems to

attacking actual design problems, however, the size and complexity of the knowledge

bases made the approach impractical. New inference engine reasoning algorithms were

developed to accommodate the growth of the knowledge bases, and research focused on

generating more efficient, sophisticated knowledge space search algorithms, conflict

mitigation techniques, truth maintenance systems, and decision explanation facilities.

The KBES represent the thought processes and cognitive abilities of humans as a

collection of possible alternative decisions coded into the knowledge base. The results are

design systems programmed to solve a very complex problem yet have difficulties solving

simple problems within the same domain. In an attempt to represent fully the knowledge

necessary to complete any fairly complex design task, the knowledge base grew into large,

intricate decision trees that were difficult to maintain. The KBES also demonstrated brittle

functionality. The solution process would fail if, during the design process, the input data

was not specified in precisely the correct manner or a design solution developed that was

not represented in the knowledge base. The addition or modification of any of the design

rules required the entire knowledge base to be reprogrammed.

The results of these research efforts led to several KBES for design. The PRIDE

project presented in [MITT86] automated the design process for paper-handling systems

in photocopiers, and [PACK94] implemented a KBES for the mold transport substructures

at Sikorsky aircraft. The AIR-CYL system implemented an expert system for the design of

air cylinders [BROW92]. Despite the limited success of these and other KBES, they have

not proven to be adequate for providing active assistance during the design process. As

[DUFF96a] argues, the process of integrating human expertise and CAD systems may

lend itself to some form of automation, yet removing the designer from the design process

eliminates the substantial benefits of a cooperative design effort between the designer and

the computer and is also restrictive.

2.1.2 Model-Based Reasoning

A new reasoning methodology known as model-based reasoning emerged to overcome

the inadequacies of the KBES. The model-based reasoning methodology is based on a

different view of the human cognitive process during design then the KBES. In design, not

all of the engineering information can be expressed in terms of if-then rules. Engineering

design is based on physical models, mathematical formulae, fundamental engineering

principles and imprecise subjective concepts. Model-based reasoning contended that

searching the design space for the possible set of existing elemental representations to

form the completed design was a more accurate representation of the human design

process than reasoning by searching the possible set of design decisions as hypothesized

for the KBES [FALT96].

The system structure for the model-based systems is very similar to that of the KBES.

Instead of reasoning on a single set of rules, however, the inference engine searches a set

of representations of the design artifact's components and their interactions based on

mathematical and physical principles that described their function [GER088]. In response

to initial input specifications from the designer, the system will iterate on the design

parameters based on the current state of the design solution until an adequate design is

achieved.

Much of the research for applying model-based reasoning to design advanced the

development of sophisticated languages to represent accurately the design artifact's

10

components and their interactions [JOSK96], [ROSE94]. The model-based reasoning

approach was applied to a variety of design automated applications, from architectural

design code verification [DYM88], to the design of small mechanical assemblies

[GOEL89]. The intelligent boiler design system presented in [RIIT88] automated the

boiler plant design process using the model-based reasoning methodology. The

components of a boiler plant such as the pumps, pipes, circuit breakers, and conductors

were represented within the design system. After the designer provided the initial

functional specifications of the boiler plant, the design system arrived at a final plant

design based on the component properties and interactions defined in the various

component representations.

The model-based reasoning methodology was successfully applied to the medical and

system diagnosis fields [ABU94], [GOEL96]. Functional systems, such as the human

vascular system or a chemical treatment facility, were represented in model-based

diagnostic environments from which accurate diagnoses can be made. The actual system

functionality was compared to the representation, and any deviations were presented to the

user. The GUARDIAN system presented in [HAYE92], for example, supervised hospital

intensive-care units and notified the supervising medical personnel if the units failed to

perform their expected tasks. This model representation, however, did not fit well into the

design assistance field because modeling the design process is not equivalent to modeling

a functioning system. Design is an open-ended process that varies from one designer to

another and can only be fully defined for a few design domains.

The model-based systems provided an impetus for later AI-based CAD systems to

shift from knowledge-based systems that based their functionality on the rules that

controlled the design process to object-based systems that utilize domain knowledge to

enhance the functionality of a design system based on the development and analysis of a

product model. One of the main shortcomings of the KBES was their attempt to fully

11

define and control the design process using only knowledge about the domain without a

clear representation of the design artifact. The model-based systems attempted to alleviate

this problem by representing both the knowledge about the model and model itself in one

knowledge resource. This trend progressed with the continued integration of AI and CAD.

2.1.3 Case-Based Reasoning

Case-based reasoning is an extension of the model-based reasoning methodology.

Rather than providing representation based on fundamental engineering principles or rules

on which decisions and reasoning can be based, case-based systems use actual design

cases as the knowledge base. The case-based reasoning methodology is founded on the

principle of design by analogy - designers develop new design solutions based on their

past experiences in that domain [KUMA95].

The case-based framework is shown in Figure 2-2. When presented with a new design

problem, the system retrieves similar past designs from the case base by matching design

attributes present in both the current design specifications and the past design cases. It then

attempts to adapt and modify the current problem data using the past solution strategies to

arrive at a complete design artifact. The new solution is then added to the case base for use

in later design problems.

This methodology exhibits a distinct shift towards object-based systems. The

adaptation and modification of the design model is based on comparisons between the

current design specifications and the past design cases. The solution is achieved by an

interaction between the model and the knowledge about the model, not just the knowledge

itself. There is also a clear separation between the design artifact and the knowledge

resource.

Researchers developed a number of design systems that utilized the case-based

reasoning methodology. The DEJAVU system performed functional mechanical gear

12

New Design
Specifications

Past
Case

Retriever
Case Adapter

i
Case Base

CD O
CD CD
CD O
CD CD

 (New Solution

Figure 2-2. Case-Based Design Framework

design by retrieving past gear design cases and adapting them to solve the current design

problem based on functional design specifications [BARD93]. CLAVIER provided

manufacturability assessments of aircraft engine parts [HINK95], and the PANDA system

addressed the need to simplify the pumper engine design process for novice designers

[RODE93]. These systems applied case-based reasoning to perform an automated design

process based on start-up data supplied by the designer. [SYCA92] describes the CADET

system for design synthesis of fluid-mechanical devices. The past design cases are

represented as models that describe the physical form and qualitative function of various

devices. When the functional requirements for a new design are provided by the designer,

the system retrieves relevant past design cases that can contribute to the new design

solution. The form and function of the new design is synthesized based on qualitative

reasoning guided by design rules embedded in the case adapter. Several other case-based

systems for design can be found in [MAHE95].

13

Case-base researchers forwarded the concept of "knowledge chunking" as the means

for developing an efficient method for searching the large case bases of the prototype

design systems. Dealing with a case as a whole was neither effective nor efficient. Instead,

a case was decomposed into smaller components, or chunks, of knowledge. [DOME93]

contends that by decomposing a past design cases into smaller, more manageable

components of the design artifact, the reasoning process becomes more efficient and

effective by only searching for the relevant parts of past design cases, not the case as a

whole. This provided a more effective means of organizing the past design cases and

forced the system designers to adequately decompose the design artifact into the

applicable and pertinent components of the domain. Retrieval of past design cases,

however, mandated new design problems match the decomposed structure of past cases.

This required prior knowledge of past design cases and limited the case-based approach to

addressing design problems for rigidly defined domains.

2.1.4 Blackboard Architecture

The blackboard architecture is another problem solving methodology developed by AI

researchers that has been applied to CAD systems. The blackboard problem solving

methodology is based on the concept of an opportunistic problem solving environment,

which is analogous to a group of experts gathered in a room attempting to solve a problem.

The experts are unable to discuss the problem with one another and are only permitted to

communicate using a blackboard at the front of the room. A moderator mediates the

actions of the experts and controls which expert goes to the board to contribute to the

developing design solution. Each expert contributes to the solution by reacting

opportunistically to changes in the solution and notifying the moderator of their desired

action. As the solution develops on the board, more experts are able to contribute until the

problem is solved.

14

Blackboard Knowledge Sources

rrk
 ^c

Data Flow

Control Flow

Controller

Figure 2-3. The blackboard system framework

The actual blackboard system structure, shown in Figure 2-3, consists of three primary

components: the blackboard, the controller, and the knowledge sources. The blackboard is

the global solution space that contains the developing solution. During the development of

the solution, all interaction is accomplished via the blackboard and the knowledge sources

do not directly interact. Those knowledge sources that can apply themselves to the design

solution notify the controller which moderates the order in which the knowledge sources

apply themselves to the solution. As the solution proceeds, the knowledge sources react

opportunistically to it, manipulating the objects represented on the blackboard, until

arriving at an acceptable solution.

This framework differs significantly from the previously discussed systems because

more than one knowledge resource contributes to the solution. The knowledge sources are

15

maintained separately from one another and encapsulate a single aspect of the domain

knowledge. This organization eliminates the problem of the large, deeply nested

knowledge bases found in the KBES or a single, complex model used in model-based

reasoning systems. It also allows for new knowledge sources to be brought into the system

without reorganizing the entire knowledge base. Separate knowledge sources allow

various types of knowledge to be used in support of the solution process and provide a

more realistic knowledge representation than the previous methodologies. Unlike KBES

and model-based systems, the order in which the blackboard knowledge sources apply

themselves to the solution is independent of their grouping within the system.

The blackboard framework also incorporates the concept of an object-based system.

The blackboard framework clearly separates the model from the knowledge and utilizes

both the knowledge about the domain and the actual model of the design artifact to

complete the design. The blackboard can be divided into separate sections that represent a

different aspect of the solution domain. This decomposes the model along similar lines as

case-based systems. The system also provides an interactive link between the model and

the various knowledge sources.

Blackboard systems were originally developed for use in speech recognition, system

diagnosis, and instructional planning environments. [ENGE88] and [JAGA89] provide a

review of these early blackboard systems. After experiencing early success, researchers

turned to blackboard frameworks for developing knowledge-based CAD systems

[BUSH87], [CORB86], [DIX084], [SRIR86], [VENK86]. Most of the systems utilized

the blackboard framework's multiple knowledge sources and opportunistic problem

solving methodology to facilitate automated design. [MAYE88] reports a blackboard

system for mechanical design that integrates the designer in the design process. Multiple

knowledge sources cooperate to select appropriate design components based on the input

specifications supplied by the designer and acquired from the designer during an interview

16

process similar to those used in KBES. The designer actively participates in the design

process by acting as a knowledge source and defining new design rules as the design

solution develops.

2.1.5 Hybrid Systems

Hybrid systems developed from the realization that limiting the knowledge resources

to one type of knowledge representation did not adequately support the design process. A

hybrid system combines two or more of the previously discussed AI methodologies in a

single environment. [CHAM95] discusses the importance of creating hybrid systems to

integrate multiple knowledge representations in the same design environment and to create

a more robust design system. Each AI knowledge representation has its strengths and

weaknesses, yet no single type completely solves the design problem.

In addition to combining AI tools, the hybrid systems also combined AI methodologies

with conventional CAD tools, such as analysis and drafting packages. [RODR94] presents

a hybrid design system developed for shape definition of structural components using a

combination of an expert system and an analysis program. The integration of the various

systems into one environment does not mean, however, they will work cooperatively

towards a viable solution. These design environments have developed into integrated

systems that utilize the various AI techniques for solving automated design problems in a

procedural manner, stepping through a series of pre-defined design stages. These

environments do not provide the necessary framework for supporting design assistance.

2.1.6 Commercial Packages

Several commercial systems have been developed to support the creation of AI based

CAD applications, including ICAD,™ IntelliCorp's KEE™ and Wisdom Systems'

Concept Modeller.™ The commercial systems provide sophisticated, interactive

development environments for creating AI-based applications. However, they are only

17

support packages for knowledge-based system development, not solutions to any of the

problems inherent in the methodologies.

2.2 Interactive Design Assistance

The AI methodologies cited above contributed significantly to the integration of

engineering knowledge in CAD systems. As noted, nearly all of the systems targeted

automated design or diagnostic applications. During the same time period, researchers

also investigated the development of design systems that applied the same basic AI

methodologies to integrate engineering design knowledge into interactive design systems.

The difference between the automated and interactive design assistance philosophies has

been the source of considerable debate. [MACC90] and [GALL95] argue that a

fundamental problem with automated design systems is that they attempt to define rigidly

a design process that is inherently dynamic and non-procedural. Although automated

systems perform well in domains with rigid procedures and parameterized product

models, any variances from the established regime are not allowed. Development of the

CADRE system identified the weakness of attempting to define a "complete and correct

knowledge base" for a design process that is intrinsically evolutionary [HUA96]. The

designer and the computer must participate cooperatively during the design process, with

the designer maintaining control of the process, identifying and presenting the problem

while assuming full responsibility for the results.

Current design assistance methodologies can be categorized into three groups based

on their designer interaction paradigms, as shown in Figure 2-4. The first interaction

paradigm is that of the automated design systems. The design process and the knowledge

are represented within the design system and operate to achieve a final design based on

initial input from the designer. All of the automated systems presented in the previous

sections operate with this style of interaction. In the second interaction paradigm, model

18

(Designer j ►(Designer j

1'
1

TModelJ
^Design *Wknowledge) r Design^

\Problemsy 1 i
T

(Ä>»<K»wfcd«!) (Final Product Model J

(a) Automated Design (b) Model Diagnosis

(Knowledge)-<->/ Designer j

\

TModelJ

1
(Final Product Model)

(c) On-line Design Information

Figure 2-4. Designer Interaction Paradigms

diagnosis, the model is automatically diagnosed using internally represented analysis

processes and design knowledge after the designer creates the model. The Component

Design Advisor presented in [DIAZ94] employed the diagnosis style of interaction,

analyzing a completed model and then advising the designer of any design critiques. The

ProMod-S system described in [YEH96] operated on a similar premise for sheet metal

manufacturing. The system analyzed, using a KBES, a completed geometric model

provided by the designer to identify any difficulties that may be encountered during the

manufacture of the part.

19

The PERSPECT system presented in [DUFF96b] approaches the problem of design

support using the third interaction paradigm, on-line design information. The designer can

query on-line design knowledge as shown in Figure 2-4(c) to explore similar past design

cases within a particular domain. [OXMA93] reported a similar design assistant system

that organized past designs into huge "design libraries" that respond to queries from the

designer using case-based reasoning techniques. The resulting system supports the

designer by allowing him or her to browse past designs and learn from those experiences.

[CANT95] presents a design system that implements the same designer interaction

philosophy, providing past design browsing support through a blackboard framework.

These systems implemented a variety of pro-active, or passive, design assistance that

provided design advice after the designer completed the design process, before the process

began, or in response to the designer's queries. The design assistance was not provided

interactively to the designer as the solution developed. Many of the design environments

required the designer to support the system's design process and respond to queries by the

system for pertinent information. For example, the VEXED system presented in [STEI92]

for VLSI design required the user to direct which design component to refine using a

KBES. The VT system presented in [MARC88] implemented this type of user interaction

and required the designer to provide key parameter values during the design process as a

KBES shell refined the design solution.

2.3 Engineering Design Knowledge

It is widely accepted that the range of knowledge spanned during the design process is

far broader than simple rules. [DIX095] and [BRIN95] identify some of the varied

knowledge types as:

• knowledge of the design artifact,

• design component relationships,

20

• facts and data,

• design processes, and

• analysis methods.

The development of a knowledge assisted design system must provide the means of

representing this varied knowledge in a manner conducive to design support. However, as

[BIJL87] explains, those representations innate to human designers cannot be directly

translated to computer representations. While case-based reasoning may accurately reflect

the manner by which humans reason about past design situations, experience shows the

use of a single knowledge representation type in a design environment leads to the brittle

system functionality experienced by the KB ES.

To avoid the pitfalls of a single knowledge representation environment, [MAS095]

presents an automated design system that utilized a blackboard framework with multiple,

cooperative knowledge sources that represented varied engineering systems from process

planning to cost analysis. [BAYL95] discusses a framework based on the research

conducted for the ESPRIT project that effectively integrated multiple knowledge sources

in an expert system developed to model the concurrent engineering philosophy.

[DOWL94] supports the use of multiple, cooperative knowledge sources for representing

varied engineering knowledge types, as can be found in concurrent engineering systems.

The Concept Designer presented in [HAN95] implemented an object-oriented blackboard

architecture that utilized multiple knowledge sources in support of chemical process

synthesis. The knowledge sources were maintained separately to encapsulate their

knowledge and functionality. By encapsulating the engineering design knowledge into

separate, distinct sources, multiple types of knowledge can be represented in an integrated

system. This also allows for the creation of knowledge sources responsible for single

product components or processes [THOM95]. A similar approach can be found in

[SOB091].

21

The engineering knowledge sources utilized in an interactive design support system

must also be able to communicate in a language compatible with the domain they

represent. The concept of an ontology, outlined in [GRUB93], serves as a representational

vocabulary for defining a domain. An ontology provides the means by which engineering

knowledge can be exchanged between the system and the designer [DEL095]. Because of

the complex nature of knowledge representations, the AI-based design systems required

specialized knowledge engineers to code the knowledge for the system. [MAYE88]

addressed this issue, noting that having an intermediary input the knowledge into the

system led to distortions of the knowledge because of inconsistencies acquired from the

knowledge engineer's misinterpretations of the expert's interview. Additionally, the

systems needed to be debugged by the experts, but only the knowledge engineers could

change the system.

2.4 Product Models

AI-based CAD systems that integrate an engineering product model with a knowledge

resource in an object-based framework require the development of a model representation

that must represent the full range of engineering information needed for the design

process. The model does not have to include all of the possible engineering information

about the design object, but it should contain the data from which the necessary and

pertinent engineering information can be derived [KIMU95]. The product model is yet

another means by which engineering knowledge can be introduced to the design system,

and it represents what is being designed, and how it is designed, and its representation

dictates the manner in which reasoning occurs [ROGE95]. [YAGI91] provides a historical

perspective on model representations for CAD systems.

22

2.4.1 Model Decomposition

The vast amount of engineering information contained within any design model makes

it necessary to decompose a complex design problem into smaller, more manageable

segments. [KUSI95] provides a review of decomposing design artifacts and states that, for

product decomposition, an artifact can be decomposed by structure and function. A

structural decomposition separates the product into its various physical components and

results in a hierarchical model of the geometric configuration of the design artifact. A

functional decomposition separates the artifact based on the interactions of the various

design components to perform the actions necessary to achieve the desired goals for that

product [CHIT94]. An engineering object cannot be completely defined by either function

or structure alone. The model must represent both the form and the function of the product

to be of any practical use in a design environment that integrates engineering knowledge

into the design process [GER094].

[SCHE93] identifies the integration of conventional geometric models and the

knowledge-based functional models as a fundamental problem in achieving so-called

intelligent CAD systems. Their prototype system, however, only hints at the possibility of

integrating the two models. Less than half of the representative systems presented thus far

consider the geometry of the product. Those that consider part geometry provide

assistance by diagnosing or analyzing a completed geometric model and do not provide

assistance during the geometric construction process.

2.4.2 Features

The use of features for design integrates both the form and function of a design

component in a single entity. Although the definition of a feature varies between

applications, it is widely accepted that a feature is an encapsulation of engineering

information. [BROW95] presents a feature-based model for a model-based geometric

23

reasoning system and defines a feature as "any perceived geometric or functional element

or property of an object useful in understanding the function, behavior, or performance of

the object." For example, after a functional decomposition has been performed on a design

artifact, features can be used to represent the resulting entities of the model, which can be

placed in a hierarchical model of the product. The power of the feature-based

representation, though, is that the features represent the geometry of the part as well as

other engineering information, such as tolerances and material properties. [DIX087] and

[SHAH95] provide reviews of the use of features in CAD.

Feature-based design (FBD) utilizes features as the building blocks to construct and

represent a design artifact. Just as conventional CAD systems provide two-dimensional

sketching and three dimensional solid modeling packages for geometric model

construction, FBD systems provide pre-defined features for feature-based model

construction. Unlike the geometric model, however, the feature-based model represents

both the geometry and other engineering characteristics of the model. In addition, feature-

based design implicitly builds design intent, or the rationale for making certain design

decisions, into the final product model. Individual features represent certain functional

aspects of the total design, and the choice of a particular feature in lieu of another

represents the designer's intent [ROY95].

As the AI-based CAD systems have moved from the knowledge-based framework of

the KBES to the object-based framework of the blackboard architectures, features have

become a common basis for the integration of the engineering knowledge and models.

[BATA93] discusses the benefits of the use of features for data and knowledge integration.

The feature serves as yet another discrete form of knowledge about the complete product

model to be used during the reasoning process, and, because feature-based models are

hierarchical in nature, reasoning about the product can be performed on varied levels of

detail. The use of features in the AI-based CAD systems, though, has been limited to

24

model diagnosis and critiquing environments that utilize a completed feature-based

product model for a particular knowledge-based analysis [CHEN95], [BATA93],

[BROW95], [BAYL95], [ROY95], [YEH96].

2.5 A Foundation for Knowledge Assisted Design

This chapter has presented the past efforts towards integrating experiential engineering

knowledge in CAD systems. Many of the systems were developed primarily for automated

design synthesis and model critiques and have shown limited success in those areas. While

their model and knowledge representations do not support an open-ended, interactive

design process, these past efforts do provide the fundamental building blocks upon which

a knowledge-assisted deign methodology can be based.

The foundation for any CAD system is a representation of the design model that

allows the design system to effectively perform its expected task. Conventional CAD

systems are based on geometric models which can be constructed and analyzed using

readily available design systems. As presented in Chapter One, the goal of this research is

to develop a CAD methodology for an interactive design environment that integrates

experiential engineering knowledge and conventional CAD tools and to provide

interactive support during the design process. For this reason, the methodology must

provide a proper representation of the design artifact, the design knowledge and the design

process. These models must be integrated into a design system that provides interactive,

opportunistic design support during the design process.

The next chapter presents the product, knowledge, and process models formulated for

the knowledge assisted design methodology. These models build on a number of the

approaches presented in this chapter and extend the representations to adequately support

a dynamic, interactive design process. Chapter Four then presents the integration of the

models into a framework for knowledge assisted design.

25

CHAPTER 3

REPRESENTING ENGINEERING KNOWLEDGE FOR DESIGN

As discussed in the previous chapter, the foundation for the knowledge assisted design

methodology is appropriately representing the engineering knowledge for design. This

includes representing the design artifact itself, the standards and guidelines that control

and determine the attributes of the design artifact, and the design procedure for arriving at

a final product model. The engineering knowledge representations build on the object-

based system framework discussed in the previous chapter and extend the concept one

step farther. The model is at the core of the methodology, and the design knowledge

provides assistance to the designer during the design process. This chapter addresses both

the model and the knowledge representations established for the knowledge assisted

design methodology.

3.1 The Product Model

The product model structure is based on four fundamental requirements motivated by

the shortcomings of the methodologies presented in Chapter One. First, the model

structure must allow the designer to express both the functional and structural engineering

content of the product, as well as design intent during the design process. Second, the

model must represent the engineering content in a vocabulary familiar to the designer.

Third, the knowledge must be able to interact with the model on various levels of detail.

Finally, the model structure must be easily extensible, allowing the design engineer to

26

extend the model's structure without detailed knowledge of the design system's

functionality.

An object-oriented, feature-based model structure was formulated based on these

requirements and preliminary investigations. The feature-based model was selected

because features encapsulate both the form and function of the design artifact in single,

distinct entities. A designer can perform both functional and geometric design

simultaneously if features are used in conjunction with the feature-based design

environment to be discussed in the next chapter. The dual functional and structural

representation in features allows the designer to create a product model much richer in

engineering content than the previous AI-based CAD systems that considered only

functional properties of the design artifact and avoided geometry altogether. The feature-

based model also decomposes a design artifact into smaller segments, thereby reducing a

complex design problem to a number of smaller, more manageable problems. This was a

key decision that laid the foundation for the development of the knowledge representation

and design system functionality. The design example shown in Figure 3-1 presents a

simplified model of the engine flywheel developed for the prototype design environment

discussed in Chapter Five. The example will be used to provide an overview of the model

hierarchy and introduce some of the key terms.

3.1.1 The Feature-Based Model Hierarchy

The model is organized in a hierarchical data structure shown in Figures 3-1(c) and (d)

and consists of three layers. Each successive layer contains more detailed engineering

information about the product. The outermost layer of encapsulation is the model, which

presents the design as a single entity. Each instance of a model represents a unique design

scenario and can be identified by its type and a unique identifier, which, for this example,

are "flywheel" and 1, respectively. The model encapsulates the details of the product

27

(a) Engine Flywheel

Ring Gear
Trunnion

Top Relief

k
Web

Relief

S

Clutch
Mounting

Face
Pilot
Bore

Friction
Face

Mounting
Bore

Axis |

I

(b) Exploded View of Cross-Section
A-A and Fly wheel Features

Model: "Flywheel 1"
Features

C Axis)

(Web Relief)

C Ring Gear Trunnion y

(Top Relief)

(Clutch Mounting Face^

C Pilot Bore)

(Friction Face J

(Mounting Bore)

(Clutch)

(c) Flywheel Model

Feature: Ring Gear Trunnion

Parameters

C Height 1.25")

(Depth 2.24" ~)

(inner Diameter 23.25")

(Surface Finish 0.06 Ra)

f Brinell
I Hardness

130 N
267
388 J

Geometric Elements

Horizontal Line
(Length | 2.24")

Vertical Line
(Length | 1.25")

(d) Feature Parameters and Geometric
Elements for the Ring Gear Trunnion

Figure 3-1. Flywheel Example of a Model Hierarchy

28

design as they are defined during the design process by serving as a container for, and

providing external access to, the next layer of the hierarchy, features.

Features represent the functional components of the design artifact and are identified

by the actual names of the entities used by designers to characterize their functionality.

Features encapsulate the detailed geometric and non-geometric engineering model content

in parameters and geometric elements which constitute the final layer of the hierarchy.

Nine features comprise the flywheel model: axis, web relief, ring gear trunnion, top relief,

clutch mounting face, pilot bore, friction face, and mounting bore.

Parameters are key-value pairs that represent the detailed geometric and non-

geometric engineering attributes of a feature, such as dimensions and surface tolerances.

The parameter key identifies the name of the attribute as defined in the designer's domain

ontology. The ring gear trunnion feature, shown in expanded form in Figure 3-1(d), has

five parameters identified by the keys height, depth, inner diameter, surface finish, and

Brinell hardness. There are two types of parameter values: continuous and discrete.

Continuous parameter values are defined in the feature as either a number or a string that

the designer assigns a specific value during the design process. Discrete parameter values

are defined in the feature as a set of values from which the designer can choose to assign

the value of the parameter. The Brinell hardness parameter defines three discrete values

from which the designer may choose during the design process. The other ring gear

trunnion parameter values are continuous and may be assigned any value.

Geometric elements are the primitive entities that combine to define the form of a

feature and are used to position the feature within the model. They are identified according

to the designer's domain ontology, and each geometric element contains a list of

parameters that define the entity's dimensions. For a two-dimensional geometric model,

such as the flywheel cross-section, the geometric elements include lines and arcs. The ring

gear trunnion geometry is defined by two geometric elements: a horizontal line and a

29

vertical line. Each line contains one parameter that defines the dimension "length" with a

continuous value. Geometric elements are positioned with respect to one another based on

the order in which they are added to the feature. Feature positioning will be discussed later

in the chapter.

The product model structure satisfies the four requirements presented at the beginning

of the chapter. Features encapsulate both the form and function of a design component,

and when coupled with a feature-based design environment, allow the designer to express

geometric and non-geometric engineering information and design intent, which satisfies

the first requirement. The entities on all layers of the hierarchy are identified by the actual

names used by designers, thereby satisfying the second requirement. The hierarchical

structure of the model also allows the knowledge to interact with the model on increasing

levels of detail, from the model to the parameters, and satisfies the third requirement.

Finally, the object-oriented framework satisfies the fourth requirement. The designer only

has to extend from the established framework to add functionality to the model, rather

than reconfigure the entire model.

3.1.1.1 Feature Geometry

A more detailed feature hierarchy has been established to accommodate the various

geometric configurations of features. Features descend from the parent feature class as

shown in Figure 3-2. The next level of the hierarchy discerns the features with and without

a geometric representation as geometric and non-geometric features. While the power of

features lies in their capability to encapsulate both the form and function of a design

component, features can represent non-geometric functional components of the model and

are not required to contain geometric elements. The exploded view of the flywheel cross-

section shown in Figure 3-1(b) identifies the eight geometric flywheel features by their

30

(Feature)

(Geometrie) (Non-Geometric j

(Fixed) (Variable)

Figure 3-2. The Feature Hierarchy

location within the model. The ninth feature, the clutch, is a non-geometric flywheel

feature. It contributes functionally to the design but has no geometric representation.

The hierarchy extends one level deeper to isolate the two geometric feature

configurations: fixed and variable. Fixed geometric features are pre-defined with a set of

geometric elements to describe the feature geometry. The geometric element parameter

values can be modified during the design process; however, the type and number of

geometric elements in the feature are immutable during the design process. The flywheel

ring gear trunnion is an example of a fixed geometric feature. Its geometric elements are

pre-defined, include a horizontal line and a vertical line, and cannot be modified during the

design process.

Variable geometric features differ in that the number and types of geometric elements

to define the feature geometry are mutable during the design process and are not pre-

defined. The geometric element parameter values can also be modified during the design

process. The flywheel web relief shown in Figure 3-3 is a variable geometric feature. Prior

to the design process, the feature is defined with a name, web relief, a single parameter,

surface finish, and no geometric elements as shown in Figure 3-3 (a). During the design

31

Feature: Web Relief

Parameters

(Surface Finish 0.06 Raj

Geometrie Elements

None

(a) Web Relief Feature Prior to Design Process (b) Desired Geometry

Feature: Web Relief
Parameters

(Surface Finish 0.06 Raj

Geometrie Elements
f Vertical Line

"))
\ (Length 1.25"

f Are
^

V (Radius 2.24"

f" Vertical Line
^

{ (Length 3.50"

f Are
^

V (Radius 2.24"

f Vertical Line
"))

\ (Length 1.25"

(c) Resulting Web Relief Feature Structure

Figure 3-3. Web Relief Example of a Variable Geometrie Feature

process, the designer decides to define the web relief geometry as shown in Figure 3-

3(b).Three vertical lines and two arcs are added to the web relief to achieve the desired

geometry. The resulting feature is shown in Figure 3-3(c).

32

3.1.1.2 Feature Positioning

The feature positioning methods are based on the concept of "handles" presented in

[ANDE86] and [BURC87]. Handles are attachment points defined within a feature's

geometric elements that provide an object-oriented method for positioning geometric

elements and features relative to one another. They are used to position geometric

elements to define feature geometry and to position features to define the model geometry.

Handles are identified by unique integers.

The handle positions for each two-dimensional geometric element are defined relative

to one another in a planar cartesian coordinate system local to the geometric element.

Consider the example of the horizontal line shown in Figure 3-4. The position of handle 1

in its local coordinate system is (0,0). The position of handle 2 is (/,0), where / represents

the line's length parameter value. Similar positions are established for the vertical line and

arc.

Local _
Position

Identifier • -*-ID
Handle

A

m
(0,0)

X

I

Horizontal Line

(W)
t
l,

2 E2 «w

& "(0,0) x
Vertical Line

Figure 3-4. Feature Handles

(0/-)

(0,0)^_^ fe

1 0 X

Arc

(r,0)

Each geometric element is assigned a positioning relation that defines its location

relative to another geometric element in the feature. The geometric elements developed for

33

the flywheel example and prototype design system are two-dimensional primitives that, by

not allowing rotation, have two translational degrees of freedom; therefore, they must be

positioned horizontally and vertically to establish their global position. Three positioning

relations have been established to relate one geometric element with respect to another via

their handles: Attach, HPos and VPos.

Consider once again the flywheel ring gear trunnion feature presented in Figure 3-1(d).

The feature geometry is defined by two geometric elements: a horizontal line and a

vertical line, shown in greater detail in Figure 3-5(a). Positioning the geometric elements

within the feature demonstrates the first position relation, Attach. The Attach relation joins

two geometric elements, thereby removing both degrees of freedom of the geometric

element for which it is assigned. This also combines the two geometric elements into a

ea-
rn

rav2

HVl
Attach |
 B

H2
0-
Hl

rav2

avi
H2

(a) Detailed View of Ring Gear Trunnion
Geometric Elements and Resulting Geometry

Vertical Line

c Attach (VI, Horizontal Line, H2)

(b) Vertical Line Attach Relation
J>

Feature: Ring Gear Trunnion

Parameters
C Heieht 1.25")

(DeDth 2.24" ")

(inner Diameter 23.25" ")

(Surface finish 0.06 Ra)

(Brinell
V Hardness

130 \
267)
388 J

Geometric Elements

Horizontal Line
(Length | 2.24")

Vertical Line
(Length | 1.25")

Attach

(c) Positioning of Consecutive
Geometric Elements

Figure 3-5. Positioning Geometric Elements Within Features

34

Reference Geometric Element or Feature

Attaching Handle ID Reference Handle ID

Attach (IIDI, [Element / Feature!.IIDI)

Figure 3-6. Attach Positioning Relation

single geometric entity. The format of the Attach relation is shown in Figure 3-6, and it

includes a reference geometric element and feature because it can also be used to position

features within the model. Geometric elements consecutively placed in a feature are

positioned relative to one another using the Attach positioning relation, as shown in Figure

3-5(c). Once all the geometric elements have been added to the feature, it becomes a self-

contained, fully constrained geometric entity. This is true for both fixed and variable

geometric features.

While positioning geometric elements to define feature geometry only requires a

single positioning relation, positioning features to define model geometry requires an

extension of the feature hierarchy as shown in Figure 3-7. The extension isolates two

feature types used in the feature positioning configurations: independent and dependent

(Feature)

(Geometric) C Non-Geometric)

C Fixed) C Variable)

Independent A
Dimension J

Dependent ^\ (Independent
Dimension J\^ Dimension

Dependent
Dimension

Figure 3-7. Positioning Extension of the Feature Hierarchy

35

dimensions. Independent dimension geometric features, or independent features, are

features whose dimensions are not dependent on the positions or dimensions of other

features. Independent features can have either fixed or variable geometry. Independent

features are positioned using the Attach relation and HPos and VPos relations. The HPos

and VPos relations assign the location of features relative to one another and remove either

the horizontal or vertical translation^ degree of freedom, respectively, from the feature

Additionally, the Hpos and VPos statements allow a feature to be offset from another by

the value of the offset parameter. The format of both relations is shown in Figure 3-8.

Position Direction Reference Feature Offset Parameter

T
xPos X ID , Feature, ID , Parameter)

Alignment Handle ID Reference Handle ID

Figure 3-8. Horizontal and Vertical Positioning Relations Format

The example shown in Figure 3-9 illustrates the positioning of three independent

features, the mounting bore, the clutch friction face, and the axis. The mounting bore is

horizontally positioned by its MBO handle, the alignment handle, with respect to the axis'

AO handle, the reference handle, using the HPos relation. The position is not offset, so the

offset parameter is Null. The vertical position of the mounting bore is established using the

VPos relation and is offset from the axis by the bore's radius parameter. The clutch friction

face is positioned with respect to the mounting bore with the Attach relation which

positions the clutch friction face's FO handle is both horizontally and vertically with

respect to the mounting bore's MB1 handle with no offset.

The effects of position and dimension changes on independent features are illustrated

in Figure 3-9(c). Changes in their dimensions and positions only affect the position of the

36

feature that is related to them with a positioning relation. For example, the clutch friction

face is attached to the mounting bore. If the position or dimension of the mounting bore

changes, only the position of the friction face changes. The mounting bore is positioned

with respect to the axis, so any changes in the position and dimension of the friction face

do not affect the mounting bore's position.

MBOl fr

HFl

T
FO

Radius

i___. ACS -

(a) Positioned Features

Clutch Friction Face
(Attach (FO, Mounting Bore, MB1))

Mounting Bore

/fffos (MBO, Axis, AO, Null) \

WPos (MBO, Axis, AO, Radius))

(b) Positioning Relations

I
I

MB0I&-
I
I
I
I AO. m

0F1

 ÖF0
MB1

MBOIp-

EPFi

0FO
MB1

MBO h-

DFl

GJFO

AOH -"- - 0 - -

(c) Effects of Redimensioning and Repositioning Bore and Face

—S
MB1

Figure 3-9. Positioning Geometric Entities for Independent Dimension Features

37

Dependent dimension geometric features, or dependent features, are features whose

position and dimensions are dependent on both the positions and dimensions of

independent features. Dependent features can also have either fixed or variable geometry.

Positioning relations assign the location of geometric elements within the features, and

dependency relations establish the feature's positioning and dimensioning relationships

relative to other features. Each dependent feature has two dependency relations of the

form shown in Figure 3-10. The dependency relations identify the independent features on

which the feature is dependent and the handles from both the independent feature and the

dependent feature to use for positioning. Two of the dependent feature's geometric

elements must be labeled as having variable dimensions to accommodate the geometric

changes that occur when changes in the position and the dimensions of either independent

feature occur. One of the geometric element dimensions must be variable in the horizontal

direction and the other must be variable in the vertical direction.

Reference Feature

Dep (ID , Independent Feature] ,|ID|)

Dependent Feature Handle ID Reference Feature Handle ID

Figure 3-10. Dependency Declaration Format

The flywheel web relief feature is a dependent feature, and its position and dimensions

are dependent on the ring gear trunnion and the mounting bore, as shown in Figure 3-

11(a). The web relief's WO handle is dependent on the ring gear trunnion's TO handle, and

its Wl handle is dependent on the mounting bore's MBO handle, as defined by the

dependency relations shown in Figure 3-11(b). Additionally, the horizontal and vertical

variants have been identified and are shown in Figure 3-11(a). When the bore's length is

increased and the ring gear trunnion is repositioned, the web relief maintains the

38

WO
X

TO
0-

0T1

t
Dependent

^^ sJDependent

Q a

Horizontal_
Variant

Vertical
Variant

MBO MB1
(a) Detail of Ring Gear Trunnion, Web Relief

and Mounting Bore Positioning

Web Relief
Dep (WO, Ring Gear Trunnion, TOr
Dep (Wl, Mounting Bore, MBO)

(a) Dependency Relations

I

<TJ

0
(x,y)

W]

•w2

(a,b)
—B

(x+8x,y + dy)

(c) Effects of Redimensioning Bore Repositioning Trunnion

Figure 3-11. Web Relief Example of Dependent Feature Positioning

39

dependencies, as shown in Figure 3-11(c). The horizontal variant' s length increases by

öx+öw and the vertical variant's length increases by 6y.

The design system and the designer can query a feature to determine the global

position of any of its handles. The feature executes a method defined in its structure that

recursively computes the global position of reference feature handles until the position is

determined. The procedure for determining the global vertical position of a feature handle

is shown in Figure 3-12. The horizontal position is determined in the same manner.

procedure determineVerticalPosition (handle)
verticalPosition = 0.0
verticalPosition = determineVerticalPosition (reference handlelD)
verticalPosition += vertical offset parameter value
verticalPosition -= relative vertical position of attachment handle
verticalPosition += relative vertical position of handlelD

return verticalPosition
end procedure

Figure 3-12. Pseudo-Code for Determining Global Handle Position

3.1.2 Featurizing

The process of decomposing a design product into features has been called featurizing

[SHAH95]. Featurizing is very similar to performing a functional decomposition on a

product; however, the functional components of the design are identified by geometry as

well. The featurizing process for this methodology builds on that presented in [SHAH95]

and provides an extension for identifying functional features that do not have a geometric

representation. The following guidelines have been formulated to aid in featurizing a

design product.

1. Examine drawings or CAD models of the product to be featurized, ensuring that
exemplary versions and generations are considered.

2. Locate those areas of functional interest to the designer.

40

3. For each functional region, identify any areas that can be further decomposed by a
particular sub-functional interest to the designer.

4. Isolate the geometry of each functional region, as well as the engineering
parameters for the region. These are geometric features.

5. Determine the primitive geometric entities needed to build the functional features.
These are the geometric elements.

6. Identify each geometric feature as positionally independent or dependent.

7. Identify any non-geometric functional components of the design and the
engineering parameters for those components. These are the non-geometric
features.

The featurizing process is likely to be an iterative process. The key to developing a

feature base for a design product useful in this methodology is to ensure that the product is

decomposed to the lowest level of functionality possible. The intent is to construct with

and reason about features on the smallest grain of detail, thereby simplifying the entire

design artifact into a number of minute encapsulations of engineering information, and to

attempt to formulate a fundamental set of features that can be used to build all possible

models in a domain.

3.2 The Knowledge

The knowledge representation is based on three main requirements motivated by the

experience gained from the methodologies presented in Chapter Two. First, the

representation must support the variety of knowledge used in the design process. The

domain knowledge used for design covers a very broad spectrum, from simple rules to

complex analysis procedures, and more than one of the types must usually be employed to

arrive at an acceptable product design. Second, the representation must encapsulate the

domain knowledge in a very narrow spectrum of applicability. Many of the past

knowledge-based systems attempted to represent all of the domain knowledge in a single

knowledge base which led to brittle systems that could not be extended easily. Finally, the

41

representation must be easily extensible. Domain knowledge should be able to be added to

the knowledge base without detailed knowledge of the design system's functionality.

Based on these requirements and the knowledge representation used in the blackboard

systems, an object-oriented knowledge representation has been developed for this

methodology. The domain knowledge is encapsulated in multiple, autonomous knowledge

sources that provide interactive support during the design process. The following sections

detail the knowledge source structure and functionality, and describe the process for

developing a set of domain knowledge sources. This knowledge representation has been

used to incorporate SAE and ISO design standards in a prototype design system discussed

in Chapter Five.

3.2.1 Knowledge Sources

The definition of a knowledge source is similar to that of a feature; a knowledge source

is an encapsulation of engineering information. However, as features are encapsulations of

the function and structure of the design product, knowledge sources are encapsulations of

the design rules, and heuristic, analysis and support procedures of a product. Consider

once again the flywheel's ring gear trunnion, and assume that the flywheel designer has,

based on past experience, determined that the trunnion depth should be two times its

width. The knowledge source for this rule would be of the form shown in Figure 3-13.

The knowledge source consists of three sections: the trigger conditions, the can-

perform-action test, and the perform-action function. The trigger conditions identify the

feature, or features, that the knowledge source will need to perform, and may modify

during, its action process. The can-perform-action test is a preliminary test to determine if

the knowledge source can apply its knowledge to the current model. The perform-action

function is the actual application of the knowledge to a developing design solution. For

this example, the ring gear trunnion is the only feature involved in the knowledge source's

42

Height-to-Depth KS

Trigger Condition

(Ring Gear Trunnion

canPerformActionO

if depth not 2*height
return true

return false

PerformActionO

J

set depth = 2*height

Figure 3-13. An Example Knowledge Source

action procedure. If the knowledge source is activated, it will first verify, using the can-

perform-action test, that the depth parameter value is not twice the height parameter value.

The perform-action function, which changes the depth parameter value accordingly, is

called if the depth is not twice the height.

The form of all knowledge sources, regardless of their functional complexity, is the

same as the previous example. Knowledge sources only have to define trigger conditions,

the can-perform-action test, and the perform-action function to be utilized during the

design process. The representation does not limit the type of engineering knowledge that

can be used in the system. It allows for numerous types of knowledge from various design

to be represented in the system, thereby satisfying the first and third requirements of the

knowledge sources. The object-oriented structure also satisfies the second requirement,

allowing knowledge on a small scale of granularity to be encapsulated within the

knowledge source.

43

3.2.2 Developing Domain Knowledge Sources

The technique for developing the set of knowledge sources to represent the

engineering knowledge for a design domain is similar to the featurizing process. Rather

than decomposing the design product, however, the process of developing the domain

knowledge sources decomposes the knowledge about designing the product to a set of

specific design rules, advice, and procedures. Three important guidelines have been

established for decomposing design knowledge and are summarized in the following list

and explained below:

1. Limit the knowledge source applicability to the narrowest possible focus.

2. Knowledge sources must interact only with the model.

3. Limit the knowledge to design facts.

The first guideline addresses the problem of past knowledge-based systems

representing all of the knowledge in a single knowledge base. The interactions and

dependencies among the rules transformed the knowledge bases from a collection of rules

to intricate programs. While later systems alleviated this problem by breaking the

knowledge base into smaller knowledge sources, even the smaller knowledge sources

encapsulated a large amount of information. The intent of the knowledge sources for this

methodology is to represent domain knowledge decomposed to the smallest possible range

of applicability, thereby simplifying the larger design problem into a series of smaller,

more manageable solutions. The model structure is already decomposed to a very fine

level of detail, and it facilitates focusing the knowledge on small pieces of information.

The domain knowledge can be isolated to interact with a single parameter of a feature, the

most detailed level of the model hierarchy.

This approach has three distinct benefits. First, narrowly focused knowledge sources

are easier to develop and implement. A designer should be able develop and implement

knowledge sources on site, which eliminates the need for a specialized knowledge

44

engineer to maintain the knowledge sources. Second, the knowledge base is comprised of

a manageable set of discrete, autonomous knowledge sources, which eliminates the

problem of complex, nested knowledge bases. Finally, it is easier to isolate faulty

knowledge sources during the development process. Each knowledge source performs a

single action. The designer can isolate the corresponding knowledge source and make the

necessary adjustments if that process is not performing properly.

The second point is more an essential requirement than a guideline. Knowledge

sources must interact only with the model. No interaction is permitted between knowledge

sources. This alleviates the problems associated with complex, nested knowledge bases. If

nesting is not allowed, the problems will not occur.

The third guideline establishes an important basis for this research. The knowledge

sources provide design assistance to the designer during the model construction process.

They are not intended to control the design process, mimic the designer's capabilities, or

completely automate the design process. Most of the limitations of the past AI-based CAD

systems resulted from their attempt to automate complex design processes. For this

reason, knowledge sources should be limited to representing design facts that do not

require complex, cognitive reasoning processes that may not arrive at a solution or cannot

be represented in the computer. The knowledge sources should facilitate the design

process, not model it.

Table 3-1. Knowledge Source Types

Fact Type Action Description

Modification Modify feature parameter values
Establish positioning relationships
Feature addition and removal

Advisory Suggest possible design alternatives if precise
modification is not possible

Analysis Perform engineering analysis

45

During the course of this research, three types of knowledge sources have been

established: modification, advisory and analysis. These types, shown in Table 3-1 with

their respective action descriptions, provide a basis for establishing a set of domain

knowledge sources.

3.2.3 Designer Interaction

The principle purpose of the knowledge sources is to provide interactive assistance to

the designer. Their advice, therefore, must be presented to the designer to consider the

consequences of the recommended assistance. The presentation process can be

implemented in two ways, interactive and automated. A knowledge source that

implements the interactive approach presents its suggested assistance action to the

designer, and the designer controls whether or not the knowledge source performs the

action. A knowledge source that implements the automated approach performs its action

automatically, presenting the assistance to the designer by actually modifying the model.

The designer can then, if necessary, modify the changes made by the knowledge source.

3.2.3.1 Interactive

Knowledge sources that implement the interactive interaction approach are

categorized into two classes based on the type of action they perform on the model: model

modification and advisory. The first category includes knowledge sources that perform any

type of model modification. The second category of knowledge sources only provide

advice to the designer and do not perform any action on the model. An interaction message

that explains the design advice to the designer must be defined for both types of interactive

knowledge sources.

Consider the Height-to-Depth knowledge source presented in the previous section.

Figure 3-14 shows two variations of the same knowledge source, illustrating the use of

both interaction paradigms to provide an interactive assistance to the designer. The

46

Height-to-Depth KS
Trigger Condition

MÜng Gear Trunnion 5
canPerformActionO

if depth not 2*height
return true

return false

PerformActionO

c set depth = 2*height
)

Interaction Message

The trunnion depth should be
twice the height.
Can I change it?

(a) Model Modification

Height-to-Depth KS
Trigger Condition
(Ring Gear Trunnion)

canPerformActionO

if depth not 2*height
return true

return false

PerformActionO

c j>
Interaction Message

The trunnion depth should be
twice the height.

(b) Advisory

Figure 3-14. Knowledge Source Dialog Definitions

knowledge source illustrated in Figure 3-14(a) implements the model modification

paradigm. If the ring gear trunnion passes the can-perform-action test, the designer is

prompted as to whether the knowledge source should perform its action and change the

trunnion depth. The knowledge source shown in Figure 3-14(b), however, implements the

advisory paradigm. The knowledge source does not perform a specific action; it only

provides advice to the designer, recommending that the trunnion depth should be

modified.

3.2.3.2 Automated

Knowledge sources the utilize the automated presentation approach do not require any

additional methods defined within them. For example, the Height-to-Depth knowledge

source shown in Figure 3-13 presents its action to the designer automatically. If the

47

knowledge source passes the can-perform-action test, the perform action method is

immediately called to modify the model according to the rule it encapsulates.

48

CHAPTER 4

KNOWLEDGE ASSISTED DESIGN

The model and knowledge representations presented in the previous chapter provide

the fundamental building blocks for developing the knowledge assisted design

methodology. A complete implementation of the methodology, however, requires a proper

integration of the knowledge, the model, and the designer. Many of the design assistant

methodologies presented in Chapter Two integrate representations of the model, the

knowledge, and the process in autonomous design environments and only allow the

designer to support the design process controlled by the knowledge. The integration focus

of this methodology is to bring the designer, the product model, and the domain

knowledge together in an environment that allows the designer to dictate the process by

which the product model is designed while receiving dynamic design assistance from the

knowledge sources. This chapter discusses the resulting design environment and its

functionality during the design process. The next chapter presents an example of the

methodology applied to the design of engine flywheels.

4.1 The Knowledge Assisted Design Environment

The knowledge assisted design environment is an object-oriented framework based on

the blackboard architecture. The framework utilizes an opportunistic problem solving

environment with multiple, autonomous knowledge sources that provide interactive design

assistance. The framework, shown in Figure 4-1, consists of two primary components: the

49

feature-based design environment and the design assistant. The designer interfaces with

the system via the feature-based design environment and build the product model from a

set of pre-defined, domain specific features. The design assistant serves as the

intermediary between the knowledge sources, stored in a knowledge base, and the

designer.

Designer
Feature-Based

Design Environment

File Features

P ;
1

L .—| _
i

<f ^

Design
Assistant

Knowledge Base

Figure 4-1. Framework for the Knowledge Assisted Design Environment

This framework integrates the designer, the model, and the knowledge to achieve the

following properties of the knowledge assisted design methodology.

• The design process is controlled by the designer.

• The designer receives dynamic, interactive design assistance.

• The environment is domain independent and easily extensible.

Each system component encapsulates a distinct functionality contributing to the overall

capabilities of the design environment. The following sections describe the system

components, their functionality, and their contributions to these properties.

50

4.1.1 Feature-Based Design Environment

The feature-based design environment (FBDE) is the designer's primary interface with

the system. It allows the designer to create, define, and edit a product model using the

design-by-features paradigm for model construction. The FBDE provides the designer

with a set of pre-defined, domain specific features that are used to create a product model.

The features are stored in a feature base that is part of the FBDE.

The FBDE embodies two of the three methodology properties discussed above. First,

it provides for a design process controlled by the designer. In fact, the domain knowledge

is not required to complete the design process. The designer constructs the product model

by adding features to the model and defining their parameter values and positioning

relationships to arrive at a completed design. The knowledge is maintained separate form

the FBDE and only supports model construction. The FBDE allows the designer to add

features to and remove features from the model and modify the parameter values of

individual features. In addition, the designer can select specific features and specify the

positioning relations for those features. If the selected feature's geometry is variable, the

designer can add geometric elements to the feature to define its geometry. The FBDE also

supports multiple, concurrent product model construction during a single design session.

The designer can construct multiple models to experiment with design variations and can

switch between the product models during the design process. The multiple models can be

from the same or different domains and are stored in a model within the FBDE.

The separation of the domain knowledge and the FBDE was serves two purposes.

First, developing a design environment in which the designer controls the design process

and the knowledge is not necessary to construct a product model achieves a knowledge-

assisted design process. Although previous attempts at developing an interactive design

assistant realized the benefits of maintaining the domain knowledge separate from the

reasoning engine, the separation was only physical in nature. The function of the design

51

systems was so tightly linked to the domain knowledge that the system would fail if a

complete representation of the domain knowledge was not defined. These systems were

truly knowledge-based. In this methodology, only a partial representation of the domain

knowledge is required because the knowledge is not directly linked to design completion.

This alleviates the difficulty of representing complex design knowledge to achieve a

completed design. If a particular aspect of the domain knowledge is very complex and

difficult, or impossible, to accurately represent in a knowledge source, it can be left out of

the domain knowledge set without depleting the system's capabilities. The domain

knowledge sources are intended to facilitate the design process, and any complex

cognitive reasoning knowledge should be left to the designer.

The second property the design environment embodies is the domain independence

and extensibility of the methodology. The FBDE is specific to the domain of the features

that are loaded into the feature base. The system can be extended for any design domain,

provided a set of features can be defined for that domain and are loaded into the feature

base. The complete domain independence of the methodology also requires that the

domain dependent knowledge sources can be loaded into the system as easily as the

features. This issue will be discussed in the next section.

4.1.2 Design Assistant

The design assistant provides the link between the domain specific knowledge sources,

the designer, and the product model. It contains a knowledge base that is similar to the

feature base in the FDBE. The knowledge base stores the knowledge sources for the

specific domain in which the designer is designing. One design assistant is instantiated for

each model created in the FBDE; therefore, several can be in operation during each design

session.

52

The design assistant performs three distinct functions within the knowledge assisted

design environment. First, the design assistant dynamically respond to modifications in the

model and presents the changes to the knowledge sources. The design assistant presents

three types of model modifications to the knowledge sources:

• feature addition and removal,

• feature parameter value modification, and

• feature positioning modification.

When the design assistant presents the model modifications to the knowledge sources,

those knowledge sources with a trigger condition that matches the type of the modified

feature are grouped in a queue of applicable knowledge sources. The design assistant then

performs its second function, which presents those applicable knowledge sources to the

designer. The manner in which the knowledge sources are presented to the designer will

be discussed in the next section. The final function of the design assistant is to maintain a

clear separation and mediate interaction between the knowledge sources and the model.

Neither the knowledge and the model, nor the knowledge and the designer, can interact

without the design assistant.

The design assistant substantiates the final characteristics of the knowledge assisted

design methodology. It provides dynamic, interactive design support by way of the

knowledge sources. The design assistance is presented to the designer opportunistically

during the design process. The knowledge sources do not present themselves in a pre-

defined order or at a pre-defined time. They react to the design process controlled by the

designer, who can interact with the knowledge sources and affect how they are applied to

the current model.

The methodology also achieves complete domain independence because of the design

assistant's framework. Changing the domain in which the design assistant operates is as

simple as loading a new set of knowledge sources into the knowledge base. The

53

functionality of the design assistant is independent of the type of knowledge sources

contained within the knowledge base. The design environment is capable of supporting

any domain that is properly defined according to the proper format, provided that the

domain of the knowledge sources matches that of the feature base.

4.2 System Interactions During the Design Process

Having established the design environment framework and the basic functionality of

its components, a detailed examination of the design process is necessary to completely

understand the interactions taking place between the components within the system during

a design session. The design process is controlled by the designer, and there are no rules

built into the system that control how the it proceeds. However, because the designer

process takes place in a FBDE, the design process usually proceeds as follows. First, a

new model is created. Individual features are then added to the model and their parameter

values are defined. As more features are placed in the model, the inter-feature positioning

relations are defined, and knowledge source modification actions further refine the feature

parameter values. A complete model is achieved once all the necessary features have been

added to the model, their parameter values have been properly defined, and they have been

positioned within the model to form a complete geometric model. Both the designer and

the design assistant contribute to the final design throughout the design process. It must be

emphasized, however, that the designer has the final say in any changes that occur to the

model.

4.2.1 Instantiating a Model

At the onset of a design session, the FBDE cannot be used to construct a product

model until the designer instantiates, or creates, a new model. The process of instantiating

a new model triggers a series of important actions within the design environment that

54

initialize the system for the design process. To create a new model, the designer must

specify the domain to which the model belongs. The system then dynamically loads the

domain feature set into the FBDE's feature base. If the features are successfully loaded,

the system initializes the model hierarchy. The FBDE assigns the model a name, which

corresponds to the domain to which it belongs, and a unique identifier which differentiates

it from other models created within the same domain. The model hierarchy initially

contains a model layer with an empty feature list. The FBDE places the new model in its

model list.

Once the base of the model hierarchy is established, the system creates a design

assistant for the new model and initializes it with a reference to the model and an empty

knowledge base. The system also initializes the design assistant to observe the product

model and recognize any modifications that occur in it during the design process. The

design assistant then dynamically loads the domain specific knowledge sources into the

knowledge base, just as the features were loaded into the feature base. The system is now

completely initialized, and the designer can begin the design process.

The instantiation process differs slightly if a new model is created after the design

environment has been initialized. If a model of the same domain as the new model already

exists, the initialization process creates a new model hierarchy and adds that model to the

FBDE's model list. If the new model's domain is different, the initialization process

proceeds as follows. First, the FBDE creates a new feature base is created and loads the

new domain feature set into it. Second, the FBDE creates a new model hierarchy and adds

it to the model list. The FBDE also instantiates a new design assistant and, the design

assistant loads the domain specific knowledge sources are adds them to its knowledge

base. The designer can now use the design system to design multiple models by simply

switching between them during the design process.

55

4.2.2 Building the Model

The process of building and defining the product model begins once the designer

creates the model and the system initializes the design environment. Model construction is

decomposed into two distinct stages of feature modification: start-up feature modification

and feature modification. Each process involves adding features to the model and

modifying their form or function.

4.2.2.1 Start-Up Feature Modification

The start-up feature modification process occurs immediately following model

instantiation and design environment initialization. At that time, the FBDE prompts the

designer to define the parameter values for a set of start-up features. Start-up features are

functional features that define the initial input specifications for the product model. This

set of features is pre-defined and maintained in a file that lists the feature types. For

example, if the clutch is considered a start-up feature for the flywheel presented in Chapter

Three, the file will consist of one line that specifies engine type as the feature type.

This stage of the design process is similar to the designer providing the input

specifications for the automated design systems. The designer is not required, however, to

define the start-up feature parameter values for the design process to continue. When

prompted, the designer can either define the start-up feature parameter values or cancel the

action. If the designer chooses to cancel the action, the design process proceeds directly to

feature modification. If the designer defines the start-up feature parameter values,

however, those features are added to the model. The resulting internal actions will be

discussed in the next section. This process also differs from providing input specifications

for the automated design systems because it is not necessary to provide any start-up

features for a particular domain. If the file is empty, the design process simply continues to

the next phase.

56

The following guidelines have been established to assist in determining which features

to include in the set of start-up features for a particular design domain.

• Include features that define the design limits of the product, both functionally and
geometrically.

• Include features on which many or all of the features in the model are dependent.

• Do not include features that are dependent on several other features in the model.

• Include only functional features that must be present in every variation of the model.

Although the inclusion of start-up features is optional, it provides a valuable type of

assistance to the designer and defines the core foundation and design envelope for

designing the product model.

4.2.2.2 Feature Modification

The feature modification stage constitutes the bulk of the design process and includes

adding features to the model, removing them from the model and defining their parameter

values and geometric elements. Unlike the start-up feature modification stage, however,

the designer is not prompted to define a specific set of features and add them to the model.

The designer controls the feature addition process and decides when to add a particular

feature and define its parameter values. The designer can also modify or remove features

previously added to the model and define the positioning relations for those features that

have a geometric representation. Each of these actions modifies the model, and the design

assistant observes them as changes in the model and triggers a series of events within the

knowledge assisted design environment.The events triggered within the FBDE when a

model modification occurs update the status of the model. For example, when the designer

selects a feature to edit, the FBDE presents the feature's parameters to the designer and

applies any changes the designer makes to the current model.

The events triggered outside the FBDE when a design modification occurs provide the

dynamic assistance to the designer during the design process. The ensuing events are

57

independent of the type of modification to the model. When a modification occurs, the

model notifies the design assistant that a particular feature has been modified. During the

notification process, the design assistant establishes a reference to both the model and the

modified feature and presents them to the knowledge sources. The design assistant then

queries each knowledge source to determine if it may be able to provide design assistance

based on the type of feature modified. During the query, each knowledge source compares

the modified feature type to those listed in its trigger conditions. If the types match, the

knowledge source responds affirmatively to the query. If they do not match, the knowledge

source responds falsely, and the design assistant queries the next knowledge source in the

knowledge base.

The knowledge sources that respond affirmatively to the design assistant's query are

placed in an action queue. The queue sorts the knowledge sources based on the number of

trigger conditions in each knowledge source, which isolates those knowledge sources that

perform an action on the model that involves only on the modified feature from those that

utilize several features for design assistance. The knowledge sources are sorted to reduce

the possibility of potential conflicts, an issue to be discussed in Section 4.3. Following the

queue sorting process, the design assistant attempts to present the knowledge sources one

at a time to the designer. First, the design assistant queries the knowledge source's can-

perform-action test. If the knowledge source responds falsely, the query is performed on

the next knowledge source in the action queue. If the knowledge source response is true,

then it presents its action to the designer.

The knowledge sources present their design assistance to the designer using either the

automated or the interactive approach. Knowledge sources that implement the automated

interaction approach immediately perform their action. Knowledge sources that

implement the interactive presentation approach present their assistance to the designer to

control whether the knowledge source applies itself to the model. If the advice is a

58

recommendation and does not modify the model, the knowledge source presents the

design advice and the design process continues. If the knowledge source can provide

assistance by modifying the model, the designer must choose whether or not to allow the

knowledge source to perform the modification. If the designer allows the process to occur,

the knowledge source immediately performs its modification action. If the designer

chooses not to allow the action to be performed, however, he or she must provide an

explanation for contradicting the suggested design modification. The system stores the

explanation with the model data which can be viewed at a later time to justify any design

decisions that may violate established design standards.

Once a knowledge source has performed a modification action on the model, the

model notifies the design assistant that a change has been made, just as it did when the

designer modified the model. The knowledge sources are queried again, and the design

assistant creates and sorts a new list of applicable knowledge sources. This process

continues each time a knowledge source modifies the model, building a tree of possibly

applicable knowledge sources that are traversed in a depth first manner, as shown in Figure

4-2, until all the nodes have been visited.

0 '> 1 (5 0

(2 a) (6 3) 1 <7 4)

(3 7) (• 0
(4 8)

Knowledge Source

(3E> Action
Triggers

A = Order Added to Queue
B = Order of Action Performed

Figure 4-2. Depth First Knowledge Source Action Traversal

59

During the feature modification design stage, the designer also defines the geometry

for features with variable geometry. This process includes adding and removing geometric

elements and defining their dimension parameter values and positioning declarations.

Adding geometric elements to a feature is equivalent to adding features to the model. The

feature stores geometric elements in a list as they are added by the designer. By default,

Attach position relations are assigned to position the geometric elements with respect to

one another. Consider the example shown in Figure 4-3. Feature B is an independent

feature with variable geometry. When the designer adds Feature B to the model, the

system initializes the feature with an empty geometric element list and a single handle,

BO. To achieve the desired feature geometry, as shown in Figure 4-3(a), the designer first

adds as arc and a vertical line to the feature. When the arc is added, its AO handle

J'
Hl/AO

(b) Adding Arc

BO

(a) Desired Geometry of Feature B

Feature A

PPvi

[j Al/VO

HO Hl/AO

(c) Attaching Feature A to Feature B

Figure 4-3. Defining Variable Geometry

automatically replaces the BO handle. When the vertical line is added, the system defines

an Attach relation that positions the vertical line's VO handle with respect to the arc's Al

handle. Once the designer completely defines the desired geometry for Feature B, he or

60

she assigns an Attach position relation between Feature A's HI handle and Feature B's A0

handle to achieve the geometry shown in Figure 4-3(c).

The designer can define the geometry of an independent feature, as illustrated in the

previous example, once he or she adds the feature to the model. If the position is

dependent, however, the designer can define the feature's geometry only after the

dependency relations have been assigned to the feature. Additionally, a horizontal and

vertical variant geometric element must be specified before the editing process is

complete.

Ring Gear Trunnion

Horizontal
Variant

Vertical
Van an!

Mounting Bore

(a) Defining Web Relief Geometry (b) Resulting Constrained Geometry

Figure 4-4. Web Relief Example for Defining Feature Geometry

Consider the example shown in Figure 4-3 which illustrates the process of defining the

geometry for the flywheel web relief presented in Figure 3-11. To achieve the desired

geometry shown in Figure 4-3(b), the designer or the knowledge sources must first assign

the dependency relations that relate the mounting bore and the ring gear trunnion to the

web relief. Once the relations have been assigned, the designer adds three vertical lines

and two horizontal lines with their default dimensions, which the system adds to the

feature and positions with Attach relations, resulting in the geometry shown in Figure 4-

61

3(a). The designer assigns the horizontal and vertical variants as shown, and, upon

completion of the geometry specification process, the system constrains the geometry to

connect the bore to the trunnion. The model then notifies the design assistant of a model

modification, and the design assistant queries the knowledge sources as discussed in the

previous section.

4.3 Design Process Control

Although the design process is externally controlled by the designer, the knowledge

assisted design system implements internal control procedures to avoid conflicts and loops

associated with knowledge source actions. The first procedure prevents the development

of loops when the design assistant places the applicable knowledge sources in the action

queue. As shown in Figure 4-4, if the first knowledge source in the action queue is

Action Queue

(KS2)

(KS3)

(KS4)

Figure 4-5. Infinite Action Loop

triggered by, and modifies, a particular feature, the model will notify the design assistant

of the change, and the design assistant will place the same knowledge source as the first

knowledge source in the second level of the action queue tree structure. This process will

cycle indefinitely without some form of control. To avoid this problem, the system places a

62

lock on each knowledge source as it performs its action, which prevents the design

assistant from querying it. While the knowledge source's action may trigger additional

knowledge sources to be placed in the queue, once a lock is placed on it, the design

assistant cannot add the knowledge source to the action queue again until its action is

complete and the design assistant removes the lock.

The second internal control procedure deals with the automatic presentation of

knowledge source actions. Consider the example of the automated flywheel rim Height-to-

Depth knowledge source presented in Chapter Three. As an automated knowledge source,

the designer cannot control its application to changes in the model. If the designer chooses

to set the depth to a value other than two times the height, the knowledge source will

automatically change the value back. Without any for of control, the designer will never be

able to change the depth to any other value. To avoid this problem, the designer is

prompted to intervene if an automated knowledge source is applied more than once during

the same design session. The designer can either disable the knowledge source and

provide an explanation for the deviation or leave the knowledge source enabled and accept

the enforcement of the rule. A disabled knowledge source cannot contribute to the design

process until the designer specifically enables it.

The designer also has two means of manipulating the applicability of interactive

knowledge sources as they are presented during the design process. First, the designer can

allow a knowledge source to apply itself to the model and then disable its interactive

presentation capability. The doing so, the designer accepts the knowledge source's action

and allows the knowledge source to apply itself automatically for the remainder of the

design process. Second, the designer can disable a knowledge source by rejecting its

recommended action. In this case, the designer is prompted to provide an explanation for

the deviation, and the knowledge source is disabled. Disabled knowledge sources may be

enabled by the designer at any time during the design process.

63

A final form of knowledge source control allows the designer to disable all of the

knowledge sources' participation in the design process. The knowledge sources can be

completely disabled if the designer wishes to build a product model free from any

interaction with the knowledge sources. While this defeats the purpose of a knowledge

assisted design environment, it allows the designer to maintain complete control of the

design process. The designer can re-enable the disabled knowledge sources at any time

during the design process.

64

CHAPTER 5

AN APPLIACTION OF KNOWLEDGE ASSISTED DESIGN FOR FLYWHEELS

A prototype knowledge assisted design system has been implemented to validate the

design methodology presented in Chapters Three and Four. The design system is a domain

independent framework that allows the designer to create a product model in a feature-

based design environment and receive design support from multiple, autonomous

knowledge sources via the interactive design assistant. This chapter presents the design

environment and the system capabilities during a typical design session when applied to

the design domain of engine flywheels, for which a set of features and knowledge sources

were developed.

5.1 The Design Environment

The prototype knowledge assisted design environment is a domain independent design

system that can be used for knowledge assisted product design, provided a set of features

and knowledge sources are defined for a specific domain. The system was written in the

Java programming language which was chosen because of its object-oriented framework

and numerous built-in capabilities, such as platform independent graphics, string

manipulation, and networking. The design system was tested on Silicon Graphics and Sun

workstations, as well as Window's PCs, all using the same compiled code, a distinct

benefit of the Java programming language.

65

File Feature Edit Position Knowledge Sources

Model flynheel
Axis

Type Single Plate
Depth Pot Type
Size 45.0000
Friction Type Dry

Starter Mounting
Type None
Gear- Clearance 78.0000

Crankshaft Mounting Undercut
Depth 5.0000
Radius 6.0000
Angle 15.0000

Clutch Pilot Bearing Bore
Radius 36.0000
Depth 45.0OO0
Surface Roughness 3.2
Runout 0.1
Psse«bly Runout 0.0

i'"'- •"-L -—. •>" Clutch Pilot Bearing Bore —'*>. ptetiwe- Features _*,• Clut<

Figure 5-1. The Graphical User Interface

The designer interfaces with the knowledge assisted design system using the graphical

user interface (GUI) of the feature-based design environment shown in Figure 5-1. The

GUI consists of three primary components. The first component is the menu bar that

provides the designer all of the necessary commands for building a complete model. The

designer may add features to the model, remove features from the model, edit the

parameters and geometry of individual features, position features within the model, and

enable and disable the knowledge sources. The second component of the design

environment is the model visualization panel. This panel provides a dual graphical and

textual representation of the model during the design process. The graphical

representation displays the two-dimensional geometry of the features and their positions

within the model. The designer can interactively pan and zoom the model view and select

66

individual features within the graphical panel. The textual representation presents each

feature and its respective parameters and parameter values throughout the design process,

which allows the designer to visualize both the non-geometric features of the model and

the features that have not been positioned within the model. The third component of the

design environment is the active feature choice selection, which allows the designer to

select a particular feature to modify. The selection choice allows the designer to select

those features that do not have a geometric representation or have not yet been presented

graphically to the designer.

The other components of the knowledge assisted design system, including the design

assistant, the knowledge base, the model, the knowledge sources, and the features have

also been implemented according to the framework established in the previous chapter and

are written in the Java language. The remainder of this chapter discusses the application of

the knowledge assisted design methodology to the design of engine flywheels, the features

and knowledge sources developed for that purpose, and the designer-system interactions

during a typical design session.

5.2 The Design Domain

The specific domain to which the knowledge assisted design methodology has been

applied is the design of engine flywheels. An engine flywheel provides the mass and

inertia necessary to minimize the fluctuations of the engine speed during load changes.

The flywheel also provides the mounting surface for the ring gear used during engine

starting, as well as the mounting surface, clearance, and driving face for the clutch. The

features and the domain knowledge sources used for designing flywheels were developed

in collaboration with the Cummins Engine Company according to the guidelines and

procedures discussed in the previous chapters.

67

5.2.1 Flywheel Features

The flywheel features were identified using the featurizing process. Drawings and

designs of flywheels from over fifteen different engine families and five different clutch

variations were examined to identify the features necessary to design flywheels. The

geometry was simplified to a two dimensional cross-sectional representation because of

the axi-symmetric nature of the flywheel geometry. From this process, thirty-five features

were identified and are shown in Figure 5-2. Of those features, two are non-geometric, the

clutch and the starter mounting. Four geometric elements were also identified: horizontal

lines, vertical lines, angled lines, and arcs.

Once the features of the flywheel were established, their engineering parameters were

defined. The parameters for the flywheel features range from dimensions and tolerances to

type identifiers, which implement both discrete and continuous value types. For example,

the engine family feature has two parameters. The first, a discrete value type, allows the

designer to identify the engine type from a pre-defined set of engine families. The second

parameter of the engine family, the distance to the crankshaft mounting face, has a

continuous parameter value type that identifies the distance from the engine block to the

flywheel crankshaft mounting face.

The final process of defining the flywheel feature set was identifying the positioning

relations and geometric variability among the features. Four of the flywheel's features

have dependent positioning properties: the web relief, the top relief, the clutch face relief,

and the crankshaft mounting face. Of those dependent features, the crankshaft mounting

face has fixed geometry, a single vertical line, and the others have variable geometry. The

remaining flywheel features have independent positioning and fixed geometry patterns.

None of the independent features were characterized with variable geometry.

68

1 - Axis
2 - Clutch Pilot Bearing Bore
3 - Pilot Bearing Bore Chamfer
4 - Pilot Bearing Bore Hub
5 - Clutch Face Relief
6 - Spring Pocket Bore

• 7 - Spring Pocket Bore Chamfer
8 - Clutch Friction Face
9 - Face to Bore Fillet

10 - Face to Bore Undercut
11 - Clutch Pilot Bore
12 - Pilot Bore Chamfer
13 - Clutch Mounting Face
14 - Top Relief
15 - Clutch Mounting Hole
16 - Radial Clutch Pin Hole
17 - Ring Gear Trunnion
18-Ring Gear
19 - Trunnion Chamfer
20 - Web Relief
21 - Supplier ID
22 - Crankshaft Mounting Hub
23 - Crankshaft Mounting Bore
24 - Crankshaft Mounting Undercut
25 - Crankshaft Mounting Face
26 - Crankshaft Mounting Hole

Counterbore
27 - Crankshaft Mounting Hole

Countersink
28 - Crankshaft Mounting Hole
29 - Puller Hole
30 - Puller Hole Counterbore
31 - Balance Holes
32 - Engine
33 - Flywheel Housing
34 - Clutch
35 - Starter Mounting

Figure 5-2. Flywheel Features

5.2.2 Flywheel Knowledge Sources

The knowledge sources implemented for the flywheel are based on the Cummins

Engine Company Flywheel Design Standard which incorporates Society of Automotive

Engineers (SAE) and International Organization for Standardization (ISO) design

standards [CUMM94]. While the design standards enforce some strict design rules that

cannot be violated, most provide recommended parameter values, feature interactions, and

engineering analyses for flywheel design. The variety of engineering knowledge contained

within the standards provided a broad basis for testing the knowledge source framework.

69

class CrnkMtgHubPos extends KnowledgeSource

{
public String^ triggerConditions()

{
StringfJ trigger_conditions = {"Crankshaft Mounting Hub", "Crankshaft Mounting Bore"}

}

public void performAction()

{
Feature Bore, Hub;
Bore = Model.getFeature("Crankshaft Mounting Bore");
Hub = Model.getFeature("Cranksaft Mounting Hub");
Hub.Attach(0,Bore,0);

}
public boolean canPerformAction()

{
Feature Hub;
if (Model.featurelsThere("Crankshaft Mounting Hub"))

if (Model.featurelsThere("Crankshaft Mounting Bore")){
Hub = Model.getFeature("Crankshaft Mounting Hub");
if (!Hub.positionRelationlsSet())

return true;

}
return false;

}
}

Figure 5-3. Source Code for Hub Positioning Knowledge Source

Over 140 knowledge sources were developed for the flywheel domain, and they are

categorized into the modification, advisory, and analysis types.

The modification knowledge sources interact with the model in three ways. First,

positioning knowledge sources automatically define the positioning relations for the

various features as they are added to the model. For example, referring again to Figure 5-2,

when the crankshaft mounting hub is added to the model, a knowledge source

automatically defines a positioning relation to attach it to the crankshaft mounting bore.

These knowledge sources were chosen to present themselves automatically because the

positions of the features are well established for the flywheel. The designer can, however,

70

modify the positioning relations during the design process to test unique positioning

scenarios. The Java source code for this knowledge source is shown in Figure 5-3.

The second type of modification knowledge source implemented for the flywheel

involves those rules that define the parameter values of particular features within the

model. Several knowledge sources apply these standards to the model and present

themselves to the designer interactively. For example, the SAE flywheel standards define

the number of radial clutch pin holes based on the clutch type. The source code for this

knowledge source is shown in Figure 5-4.

The third type of modification knowledge sources established for the flywheel involve

those that add features to the model or remove them based on certain characteristics of the

model. If, for example, the designer chooses to add a face-to-bore fillet to a flywheel that

already has a face-to-bore undercut, the undercut must be removed from the model before

the fillet is added. Several knowledge sources have been implemented to identify these

types of situations and modify the model accordingly. Once again, these knowledge

sources present themselves interactively, allowing the designer to control their application.

The second type of knowledge source, the advisory knowledge source, was utilized to

present information to the designer for domain knowledge that did not specify specific

changes to features or the model. For example, the Cummins Flywheel Design Standard

recommends a range for the crankshaft mounting undercut dimensions based on the

engine type. Ranges of dimension values, not specific values, are recommended, so the

knowledge source only presents those ranges to the designer and leaves the responsibility

of modifying the parameter values to the designer.

The final type of modification knowledge source implemented for the flywheel design

process is the analysis knowledge source. One example of this type of knowledge source

involves the diameter of the crankshaft mounting hole countersink and. the remaining

clearance around the holes, as shown in Figure 5-5. The surface area around the holes

71

class PinHoleNumber extends KnowledgeSource implements Dialogable

{
public StringD triggerConditions()

StringQ trigger_conditions = {"Clutch", "Radial Clutch Pin Holes"}

public void createDialog(DesignEnv FBDE)

KSD = newYesNoDialog(FBDE.this);

public void initDialog(KnowledgeSourceDialog KSD)

KSD.setText(The number of pin holes should be 12 tor this clutch type. Do you wish to
change it?");

public void performAction()

Feature PinHoles= Model.getFeature("Radial Clutch Pin Holes");
PinHoles.setParameterValue("Number of Holes", 12);

public boolean canPerformAction()

Feature Clutch, Holes;
if (Model.featurelsThere("Clutch"))

if (Model.featurelsThereCRadial Clutch Pin Holes")){
Hub = Model.getFeaturefCrankshaft Mounting Hub");
Clutch = Model.getFeature("Clutch");
if (Clutch.getParameterValue(Type") == Clutch.POT){

if (Clutch.getParameterValue("Number of Holes") != 12)
return true;

}
}

return false;

}
}

Figure 5-4. Java Source Code for Parameter Modification Knowledge Source

must be a certain percentage of the hole diameter. The knowledge source responsible for

applying this rule calculates whether the necessary clearance is available based on the

positions and dimensions of the crankshaft mounting undercut, the crankshaft mounting

bore, and the crankshaft mounting holes. If the necessary clearance is not available, the

knowledge source calculates the possible diameter changes of the holes and the bore and

72

UNDERCUT INTERSECTS
COUNTERSINK

UNACCEPTABLE ACCEPTABLE

Figure 5-5. Crankshaft Mounting Hole Clearance (Courtesy of Cummins Engine
Company, Inc.)

presents them to the designer. Just as for the advisory knowledge sources, the designer is

then responsible for making the appropriate changes to the model.

5.3 The Flywheel Design Process

The design process for the flywheel begins when the designer instantiates a new

model. The system prompts the designer to specify the domain of the model to create. As

shown in Figure 5- 6, after the designer has specified the design domain, in this case the

flywheel, the system dynamically loads both the flywheel knowledge sources and feature

v\k»onse<VAaMKi.Ptz wBmmm*^*mtt"*:-<*x^z*;?±!i
Pile Fatturt £dlt. Poii«ion roovladqa Sources

mv*^P«m^A^^^^i^r^^^^^smi^

i*-fctKb Z. tw Dscan 3u»»^n ÄSl

Fil« Fe«tnr« Edit Pailtlan Knovl«dtj i Souroti

.. .-X^A: ^:;/.::W;:^:^:^<^^»m:<^, '^S: . f
LoadfaS f lg»h«i fBOtiros and towla&t soutes,„

Figure 5-6. Domain Specification and Dynamic Knowledge Source and Feature Loading

73

set and establishes a design assistant to begin monitoring any modifications to the model.

The design process proceeds from the start-up feature modification stage to feature

modification.

5.3.1 Start-Up Feature Modification

After the FBDE and the design assistant load the flywheel features and knowledge

sources into the system, respectively, the FBDE prompts the designer, as shown in Figure

5-7, to define the parameter values for the various start-up features. Four features have

been identified as the start-up features for the flywheel: the engine family, the clutch, the

flywheel housing, and the starter mounting. At this time, the designer can either choose to

5K$'; tyw&^'Sftt~tpintfaty»atkm **-■•'; v-r* £ > ■
C Lutch T"-ä>I ^one_

Bopth ►*ne — • Size | 0.0000

lp' ■ *)ry 1
Starter Mounting

jpi Tyßtif* ^ None ££a

3-:«r ZLuereeKU [O.CuOC

Engine Ffwoiiy T^» tone

Distance to Mounting Foes (2.Q£0t>

Flkjuneei Housing TtflXJ J
DiEtance To HotJTtina Face •)tP<W)Q, ^

■ !

Bare Dlaneter I410.CO00 DeDth IT I .o«9eoo-r-|

SflE Hoirtin* Nu»ber Hona —< _^sJ. '-EEli

Figure 5-7. Start-Up Feature Modification

define these features or cancel to proceed directly to the functional and geometric feature

modification stages of the design process. If the designer chooses to define the parameter

values, the features need not be completely defined. For this example, the parameter

74

values are partially defined. Once the designer is satisfied with the parameter values, he or

she disposes the dialog and the design process enters the feature modification stage.

5.3.2 Feature Modification

The FBDE adds the start-up features to the model, once they have been defined. The

design assistant observes these modifications and presents them to the knowledge sources.

Several knowledge sources are triggered by the modifications and found to be applicable

to the current state of the model. Consider the knowledge source shown in Figure 5-8. The

^mimiteäge^öär^AaMi^~r.-!$^%m,~:,;■. \,;;;•:■ j

This engine Family requires a Crankshaft
Mounting Undercut. Do you want to add it?

Ves ancf Keep Enabled 1 BSJ Yes and Disable Interact lent

Figure 5-8. Knowledge Source Presentation Dialog

design assistant presents the designer with a knowledge source that recommends that a

crankshaft mounting undercut should be added to the model because of the engine family

chosen during the start-up feature modification. The designer has three options for

applying this knowledge source to the model. First, the designer can accept the knowledge

source's action and keep its interactive presentation enabled. The knowledge source will

continue to contribute to the design process and present itself interactively. For example, if

the designer were to delete the undercut, this knowledge source would once again present

itself. Second, the designer can decline to accept the knowledge source's action. If this

option is selected, the system prompts the designer, as shown in Figure 5-9, to provide an

75

Please Enter Reason for Violation

The crankshaft mounting undercut will not be
necessary because of the flange diameter for
this appliaction.

/

Figure 5-9. Rule Violation Explanation Dialog

explanation of why the knowledge source's actions were not accepted. The system stores

this information in a design log along with the model data that can be accessed at a later

time. If this option is selected, the system disables the knowledge source, and it will not

contribute to the design process until the designer chooses to enable it. Third, the designer

can accept the action and disable the knowledge source from interactively presenting itself

during the design process. The knowledge source participates in the design process but

applies itself automatically.

After all of the start-up features have been added to the model and the applicable

knowledge sources have presented themselves to the designer, the designer is free to add,

remove, and edit features in any arbitrary order. The design assistant reacts to any of these

design changes and presents the applicable knowledge sources to the designer. If, for

example, the designer chooses to add the crankshaft mounting bore to the model, three

events would occur. First, the FBDE adds the bore to the model structure. Second, the

design assistance recognizes this change and presents it to the knowledge sources. The

design assistant then presents the applicable knowledge sources to the designer, and the

knowledge sources make their respective feature modifications. In this case, some of the

bore's parameter values are changed, and both the bore and the undercut are positioned in

the model. The third event is the graphical presentation of those features that are

76

—; ßPuneMKlpe Assisted DesignEm*mm**- ELS
^FJLW Pe«tur«, JSdi« P««l«lon Xa«irl«d9«^ ff«nrc«s^:

Engine Fair ily Flywheel Housing
Type Nona
Depth Pot Tupe
Size 10.0000
Friction Type Dry

Starter Mount 1/ig
Typo None
Gear Clearance 45.0000

Engine Fanlly

Crankshaft Mounting Undercut
Depth 5.0000
Radius 2.0000
Angle 45.0000

Flywheel Housing Type
Distance To Mounting Face 100.1000
Bore Dimeter 400.0000
Depth 155.1000
SAE Housing Nunber None

Crankshaft Mounting Bore
Radius 75.0000
Depth 15.0000
Surface Roughness 4.0
Runout 2.0
Assenbly Runout 1.0
DatUM R

--■JA» »wr ^^««.M'

flcti>* Feature* | Crank»haf tMounting Bog* .TÜ.Tj
m

Figure 5-10. Graphical Presentation of Features

completely defined and positioned within the model. As shown in Figure 5-10, the

designer has completely defined the engine family, flywheel housing, crankshaft mounting

bore, and crankshaft mounting undercut. They are completely positioned in the model and

are presented graphically. It should also be noted that the other features that have been

added to the model are presented textually.

Most of the flywheel feature positioning relations are established by automatic

knowledge sources. If the knowledge sources are disabled, however, or the positioning

relations are not completely defined by the knowledge sources, the designer can define the

positioning relations for a particular feature. Consider the puller hole feature that the

designer has added to the model and defined completely, as shown in Figure 5-11(a). The

feature is not presented graphically because it has not been positioned. The designer can

position the feature horizontally and vertically using the positioning dialog shown in

Figure 5-11(b). In this example, the designer is positioning the vertical position of the

puller holes with respect to the axis and offset from the axis by the puller holes' pattern

77

L*11V-*>4lt«*:'-Miv;r♦»i(a*tt-->Ia»«l<K*4»:'»*»ew*« <\

BidUs T5.0000

CWlOt Pilot hrln Bora
fedfcn 3.0000
DartA 15.0000
5tr-r» toutfrra 3.2
ftraut 0.1
Ifcinnlw AmA 0.0

MM Ira 0.0
Su-fta ta«mti 3J
AnxA 0.0
Pmllalla 0.0

Ctuteti Pilot Bvlni feb

Pultwttaln

niEäuwn «5,0000

__ S.0000
»•111 Dnth 15.0000
T«o Owth 0.0000
K«Mr Of Hal« 2
A-wl« Of Saoa-Micn 45.0
Pattvri fedtuc 25.0000

»r5^ÄÄ#»ftf««ewöfww?iki(

fefvwc* (tandl* m F~

ü>*waxg FM*JTB 'IM* k.U

*t»2«ff^ HrdlB ID ■ Es^ rpnvia« offcsr

ötVwt FtsUra MM .d&rifajHr ' -

|; v ^fsefc Paratfttsr fens Pat»*« feuja

.- ii5«crtivf> Offsat "A U9 K8J BBl

(a) Fully Defined Puller Holes (b) Positioning Dialog

PILa F«*rur« t-Jlt ro.Lt«-» I»»«li<<i -»«a*...««;

Or«**«« Itauntir« Bora
«■JUn 75.«
Dntn 13.00

fcmut 2.0
AEMPDIU ftraut 1.0
Oati* A

Clutch PllDt tarlr« Bar*
Rsjlui 5.0000
bptrt 15.0000

O-anMraft Ituitir« F*o

araut 0.0
Prallalisi 0.0
Dah* n

DlaaUr 5.0000
Drill Earth 15.0000
Tm DwUi O.OOOO
N*tar Of »1*» 3
Pr«la Of SKwration
Prttam Ibdlui 25.01

(c) Graphical Display

Figure 5-11. Puller Hole Position Modification

radius. The designer defines the puller hole horizontal position similarly, and the system

displays the holes as shown in Figure 5-11(c).

At any time during the design process, the designer can select a feature in the model

and edit its parameter values. In doing so, the system presents a dialog to the designer in

which the various parameters of the feature can be modified, as shown for editing the

clutch in Figure 5-12. Parameters with continuous values are presented with their value

field as an editable text area, such as the clutch size. The discrete values, such as the clutch

78

FT™

it* None

neu*

Hz?

| Pot Type -

[I7.j»n

Fricti tnTy» *>—.

M&WBA

Figure 5-12. Clutch Edit Dialog

friction type, are presented to the designer with the possible parameter values from which

to choose.

5.3.3 Variable Geometry Feature Modification

If the designer selects a variable geometry feature to edit, he or she can edit or define

its geometric elements along with its parameter values. If the feature's position is

dependent, the designer cannot define its geometry until both of the dependency

declarations have been assigned. Consider the flywheel's web relief, which is a dependent

position, variable geometry feature. Once the designer has added the ring gear trunnion

and the crankshaft mounting hub to and positioned them in the model, the web relief's

geometry can then be defined.

The designer defines the feature's geometry in the design environment shown in

Figure 5-13. As the geometric elements are added to the model, the designer can edit their

parameter values and define the horizontal and vertical variants. In this case, the horizontal

line has been assigned as the horizontal variant, and the vertical line has been assigned as

the vertical variant. The designer can then constrain the feature and view the resulting

79

'fVip) "S»< %'Mrr-lmrrt»! Vg-I^tj ; Sl~ % Wi läj VTrurrt't Otliuj j£ilj tontr*io; ^

:H
j?farüöi't»i"Ün»1 i"wirtiöii "l'iÜ>l iWlV'l.i£l [sä k»n»"*$

(a) Geometry Specification

f|lj| Srt * •grinirn«! v*-ur*J : fci.^1.'..^"" virunt) >!«*«{ tau! Or»tr«u*i j

^ijrff'iiri'iiWi 'v^'iiäi'L'Wi 'Äyj«Xii?i LSä •'^'.'»EI

(b) Constrained Geometry

Figure 5-13. Web Relief Geometry Specification

geometry, as shown in Figure 5-13(b). Once the geometry has been completely defined,

then designer exits this design environment and returns to the feature-based design

system.Creating A Solid Model

After the designer has added all of the necessary features to the flywheel model, the

system can build a three dimensional solid model of the flywheel to better visualize the

completed design. The prototype design system creates the solid model using the Java-

TWIN solid modeling package and renders it for presentation to the designer using a Java

port of Silicon Graphics' Open-GL graphics library [CADL91]. The system builds the

flywheel solid model by rotating the cross section outline 360 degrees about the flywheel's

axis. The rendering of the completed three-dimensional flywheel model is shown along

with the two-dimensional cross section and textual representations in Figure 5-14.

80

;«!•'-»*•**•»••*•"•*«•■ ►♦*t**«W' »f»^*«*»*-'»»««»*-/''

Clutob Prictloi

»■111 DBIX 71.1000
T«t DvKft O.OflflO
mar 0* *!*■ <
«*U Of Sarvtian «,0000
PMWK tetu 71.0000

Clutch turtle >*>!■«
OtMtar «.0000
[«■ill teitn 2.0000
iw OKX» o.oooo
MtrlX *>!■■ IS
*«l.0f S«nr«la> 0.0000
PMUm (Mb* 131.3000

(telUl Clutcti Pin >*>U*
DiwUr 1.0000
OrlU 0MTtf> 10.0000
TtB 0«DW> 0.0000
toe*- of WIM 13
»«La Of Swwrtta. 0.0000
»»turn OMULS 0.0000
Dl*Ur» fra Fa tt.lOOO

frarnyft Ftairtlf»; Casttar Bor*
DUiwtar- 12.0000
DKttft 1.0000

Pullwwilai

Drill Ontn * 20.1000
Ta> toui 0.0000

(a) Three-Dimensional Model (b) Two-Dimensional Model

Figure 5-14. Three-Dimensional, Two-Dimensional, and Textual Model Visualization

81

CHAPTER 6

CONCLUSION

Computer-aided design systems have become an integral part of the modern design

process. While today's CAD tools provide support for drafting, geometric modeling, and

computational engineering analysis, they do not serve as interactive, knowledgeable

support tools for the design process. This can be attributed to fact that conventional CAD

methodologies do not integrate experiential engineering knowledge into the design

process. Designers must draw upon their past experiences and design knowledge during

the design process, just as they did before the advent of CAD.

This research developed a computer-aided design methodology for integrating

engineering knowledge in a CAD environment that provides dynamic, interactive,

knowledgeable design assistance for a design process that is completely directed by the

designer. The contributions of the knowledge assisted design methodology can be

summarized in two areas. First, the model and knowledge representations have resolved

many of the inadequacies of the representations used in past AI-base CAD systems. They

are extensible to varied design domains by the design engineer. The representations also

facilitate the desired design assistance during the design process. In addition, the product

model created during the design process defines both the geometric and non-geometric

properties of the design artifact, unlike past research efforts in this field. The second area

of contribution is the development of a domain independent framework for building a

knowledge assisted design environment. The resulting system integrates the designer, the

model, and the engineering knowledge in an environment in which the designer maintains

82

control of a design process interactively supported by the engineering knowledge. The

knowledge sources that apply themselves opportunistically to the developing design

solution. They also serve as a repository for designers' knowledge well after they leave the

organization.

6.1 Future Research and Development

While the knowledge assisted design methodology contributes to the research in this

area, there are a number of areas in which further research and development could

improve the methodology. The methodology presents a sound, domain independent

framework that could be applied to any design domain, provided the appropriate set of

features and knowledge sources were implemented for that domain. It was, however, only

validated with the engine flywheel design example. The flywheel proved to be a broad and

well documented test scenario. A large amount of engineering information was available

for the flywheel product model, and the variability in the flywheel features and creativity

required during the design process fit well into a design assistance framework. The

flywheel features and design rules were well documented prior to the start of the research,

and the axisymmetric, two dimensional nature of the flywheel's geometry also greatly

reduced the geometric complexity of the positioning algorithms and feature definitions. To

further develop the methodology and reveal any development issues not encountered

during the flywheel implementation, the methodology should be tested using a variety of

design domains.

In particular, two specific properties of design domains should be tested. First, a

domain in which the geometry cannot be simplified to a two-dimensional cross-section

representation would test the implications of more complex geometric properties of the

model with the knowledge source interactions. This would also necessitate the

implementation of a constraint management package within the design environment,

83

thereby increasing the capabilities of the designer and the knowledge sources to define

relationships between features within the model. The second domain property that should

be validated is a feature definition process that is not as clear as it was for the flywheel.

Although the features developed for this research proved successful for the flywheel, this

modeling paradigm may not fit well into other design domains. In that case, an alternate

model structure would have to be developed to accommodate those situations.

Another important area of future research that was somewhat addressed in this work is

the concept of using distributed knowledge sources and feature bases from a centrally

located knowledge assisted design environment, or using centrally located knowledge and

feature bases from distributed design environments. While this was not implemented in

the prototype design environment, the framework was specifically designed to facilitate

the development of these capabilities. The Java programming language was used not only

because of its platform independent properties and well developed object-oriented

programming framework and because of the sophisticated networking capabilities built

into the language, such as Remote Method Invocation (RMI). The knowledge sources and

features are both maintained as separate objects within the design environment

framework, and extending the system to utilize these objects if they are located on remote

computer systems would not be a difficult task. However, the use of distributed objects

does bring about a number of other research issues such as access and control that would

need to be addressed.

While the use of distributed objects in the knowledge assisted design environment

may bring about some control issues not yet encountered, another area of research for the

design methodology in its current, non-distributed state is the issue of knowledge source

action control. Although the control algorithm can identify loops and conflicts during the

knowledge source application process, more sophisticated control algorithms could be

developed that resolve some of the obvious conflicts without involving the direct action of

84

the designer. In addition, if the number of knowledge sources increases by a factor of 10

or 100, more sophisticated algorithms would have to be developed to increase the

efficiency of the knowledge source query process.

A research issue that would greatly contribute to the capabilities of the methodology is

the development of knowledge source and feature development environments. One of the

primary issues in this work was to develop model and knowledge representations that

could be adapted to any design domain by an engineer without involving a specialized

knowledge engineer. While the representations are relatively straight forward and easy to

extend, the creation of knowledge source and feature development environments would

further reduce the complexity involved in extending the knowledge assisted design

methodology to a specific domain. In particular, a knowledge source development

environment could verify that a knowledge source's action does not conflict with any other

knowledge source action before adding it to the set of available knowledge sources.

In addition to the suggestions for future research presented in this section, a number of

conventional CAD capabilities such as finite element analysis and manufacturability

analysis could be added to the design environment to further support the entire design

process. The intent of the knowledge assisted design methodology is to provide a flexible

framework that can be applied to numerous design scenarios in which the integration of

experiential engineering knowledge and conventional CAD methodologies will contribute

to the overall success of a completed product model.

LIST OF REFERENCES

85

LIST OF REFERENCES

[ABU94] Abu-Hanna, A., Jansweijer, W., Benjamins, R. and Wielinga, B.,
"Functional Models in Perspective: Their Characteristics and Integration in
Multiple Model-Based Diagnosis," Applied Artificial Intelligence, Vol. 8,
pp. 219-237,1994.

[AKMA94] Akman, V., ten Hagen, P. J. W. and Tomiyama, T., "Desirable
Functionalities of Intelligent CAD Systems," Intelligent Systems in Design
and Manufacturing, ASME Press, New York, 1 ed., pp. 117-138,1994.

[ANDE86] Anderson, D. C, "Closing the Gap: A Workstation-Mainframe
Connection," Computers in Mechanical Engineering, Vol. 4, No. 6, pp. 16-
24, 1986.

BARD93] Bardasz, T. and Zeid, I., "DEJAVU: Case-Based Reasoning for
Mechanical Design," Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, Vol. 7, No. 2, pp. 111-124, 1993.

[BATA93] Batanov, D. N. and Lekova, A. K., "Data and Knowledge Integration
Through the Feature-Based Approach," Artificial Intelligence in
Engineering, Vol. 8, pp. 77-83, 1993.

[BAYL95] Bayliss, D. C, Akueson, R. and Knight, J. A. G., "Concurrent Engineering
Philosophy Implemented Using Computer Optimized Design," Journal of
Engineering Manufacture, Vol. 209, No. B3, pp. 193-199, 1995.

[BIJL87] Bijl, A., "Strategies for CAD," Intelligent CAD Systems I, Springer-Verlag,
Berlin, pp. 2-19, 1987.

[BRIN95] Brinkop, A., Laudwein, N. and Maasen, R., "Routine Design for
Mechanical Engineering," AI Magazine, Vol. 16, No. 1, pp. 74-85, 1995.

[BROW92] Brown, D. and Chandrasekaran, B., "Knowledge and Control for the
Mechanical Design of an Expert System," IEEE Computer, Vol. 19, No. 7,
pp. 92-100, 1992.

86

[BROW95] Brown, K. N., Williams, J. H. and McMahon, C. A., "Conceptual
Geometric Reasoning by the Manipulation of Models Based on
Prototypes," Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, Vol. 9, No. 5, pp. 367-385, 1995.

[BURC87] Burchard, R. L., Feature-Based Geometric Constraints Applied to
Constructive Solid Geometry, MS Thesis, Purdue University, 1987.

[BUSH87] Bushneil, M. L. and Director, S. W., "ULYSSES - A Knowledge-Based
VLSI Design Environment," Artificial Intelligence in Engineering, Vol. 2,
No. 1, pp. 33-41, 1987.

[CADL91] Twin Solid Modeling Package Reference Manual, CADLAB, School of
Mechanical Engineering, Engineering Research Center, Purdue University,
September 1991.

[CANT95] Cantzler, O., Mekhilef, M. and Bocquet, J.-C, "A Systemic Approach to
Corporate Knowledge: An Ontology to Process Modeling in a Design
Department," Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, Vol. 1, pp. 153-158, 1995.

[CHAM95] Chambers, T. L. and Parkinson, A. R., "Knowledge Representation and
Conversion for Hybrid Expert Systems," Proc. ASME Design Engineering
Technical Conferences, 21st Annual Design Automation Conference,
American Society of Mechanical Engineers, Boston, Massachusetts, DE
(Series), Vol. 82, pp. 9-16, 1995.

[CHEN95] Chen, Y., Miller, A. and Sevenler, K, "Knowledge-Based
Manufacturability Assessment: An Object-Oriented Approach," Journal of
Intelligent Manufacturing, Vol. 6, No. 5, pp. 321-337, 1995.

[CHIT94] Chittaro, L., Tasso, C. and Toppano, E., "Putting Functional Knowledge on
Firmer Ground," Applied Artificial Intelligence, Vol. 8, No. 2, pp. 239-258,
1994.

[CORB86] Corby, O., "Blackboard Architectures in Computer Aided Engineering,"
Artificial Intelligence in Engineering, Vol. 1, No. 2, pp. 95-98, 1986.

[CUMM94] Flywheel Product Technology Practice (Design), Cummins Engineering
Standard 98016, Cummins Engine Company, Inc., Columbus, IN,
December 1994.

[DEL095] Deloule, F. and Roche, C, "Ontologies & Knowledge Representation,"
Proc. 1995 IEEE International Conference on Systems, Man and
Cybernetics, IEEE, Vancouver, British Columbia, Vol. 5, pp. 3857-3862,
1995.

87

[DEMA92] Demain, A. and Zucker, J., "Prototype-Oriented Representation Of
Engineering Design Knowledge," Artificial Intelligence in Engineering,
Vol. 7, pp. 47-61,1992.

[DIAZ94] Diaz-Claderon, A., Fenves, S., et al., "Computer-Based Advisors for
Environmentally Conscious, 'Green' Product Design," Computing in Civil
Engineering, Vol. 2, pp. 1497-1504, 1994.

[DIX095] Dixon, J. R., "Knowledge-Based Systems for Design," Journal of
Mechanical Design, Vol. 117B,No. 6, pp. 11-16, 1995.

[DK087] Dixon, J. R., Cunningham, J. J. and Simmons, M. K, "Research in
Designing with Features," Proc. IFIP TC 5/WG 5.2 Workshop on
Intelligent CAD, Elsevier Science Publishing Company, Boston, MA, Vol.
l,pp. 137-148, 1987.

[DIX084] Dixon, J. R., Simmons, M. K. and Cohen, P. R., "An Architecture for
Application of Artificial Intelligence to Design," Proc. ACM/IEEE 21st
Design Automation Conference, Albuquerque, NM, pp. 634-640, 1984.

[DOME93] Domeshek, E. and Kolodner, J., "Using the Points of Large Cases,"
Artificial Intelligence for Engineering Design and Manufacture, Vol. 7,
No. 2, pp. 87-96,1993.

[DOWL94] Dowlatshahi, S., "A Comparison of Approaches to Concurrent
Engineering," The International Journal of Advanced Manufacturing
Technology, Vol. 9, No. 2, pp. 106-113, 1994.

[DUFF96a] Duffy, A. H. B. and Duffy, S. M., "Learning for Design Reuse," Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 10,
No. 2, pp. 139-142,1996.

[DUFF96b] Duffy, A. H. B. and Duffy, S. M., "Sharing the Learning Activity Using
Intelligent CAD," Artificial Intelligence for Engineering Design and
Manufacture, Vol. 10, No. 2, pp. 83-100, 1996.

[DYM88] Dym, C. L., Henchey, R. P., Delis, E. A. and Gonick, S., "Representation
and Control Issues in Automated Architectural Code Checking,"
Computer-Aided Design, Vol. 20, No. 3, pp. 137-145, 1988.

[ENGE88] Engelmore, R. and Morgan, T., Blackboard Systems, 1 ed., Addison-
Wesley, New York, 1988.

[FALT96] Faltings, B. and Sun, K., "FAMING: Supporting Innovative Mechanism
Shape Design," Computer-Aided Design, Vol. 28, No. X pp- 207-216,
1996.

88

[GALL95] Galle, P., "Towards Integrated, 'Intelligent,' and Compliant Computer
Modeling of Buildings," Automation in Construction, Vol. 4, No. 3, pp.
189-211,1995.

[GER088] Gero, J. S., Maher, M. L. and Zhang, W., "Chunking Structural Design
Knowledge as Prototypes," Artificial Intelligence in Engineering: Design,
Computational Mechanics Publications, Southampton, pp. 3-21, 1988.

[GER094] Gero, J. S. and Rosenman, M. A., "The What, the How, and the Why in
Design," Applied Artificial Intelligence, Vol. 8, pp. 199-218, 1994.

[GOEL89] Goel, A. K. and Chandraskaran, B., "Use of Device Models in Adaptation
of Design Cases," Proc. DARPA Workshops on Case-Based Reasoning,
Morgan Kaufmann, San Mateo, CA, pp. 100-109,1989.

[GOEL96] Goel, A. K. and Stroulia, E., "Functional Device Models and Model-Based
Diagnosis in Adaptive Design," Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, Vol. 10, No. 4, pp. 355-370, 1996.

[GRUB93] Gruber, T. R., Toward Principles for the Design of Ontologies Used for
Knowledge Sharing, Stanford Knowledge Systems Laboratory, Technical
Report, KSL 93-04, 1993.

[HAN95] Han, C, Douglas, J. M. and Stephanopoulos, G., "Agent-Based Approach
to a Design Support System for the Synthesis of Continuous Chemical
Processes," Computers and Chemical Engineering, Vol. 19, Supplement,
pp. S63-S69,1995.

[HAYE92] Hayes-Roth, B., Washington, R., et al., "Guardian. A Prototype Intelligent
Agent for Intensive-Care Monitoring," Artificial Intelligence in Medicine,
Vol. 4, No. 2, pp. 165-185, 1992.

[HINK95] Hinkle, D. and Toomey, C, "Applying Case-Based Reasoning to
Manufacturing," AI Magazine, Vol. 16, No. 1, pp. 65-73, 1995.

[HUA96] Hua, K., Faltings, B. and Smith, I., "CADRE: Case-Based Geometric
Design," Artificial Intelligence in Engineering, Vol. 10, No. 2, pp. 171-
183, 1996.

[JAGA89] Jagannathan, V., Dodhiawala, R. and Baum, L., Ed., Blackboard
Architectures and Applications, Perspectives in Artificial Intelligence,
Academic Press, Inc., San Diego, CA, 1989.

[JOSK96] Joskowicz, L. and Neville, D., "A Representation Language for
Mechanical Behavior," Artificial Intelligence in Engineering, Vol. 10, No.
2, pp. 109-116,1996.

89

[KIMU95] Kimura, F. and Suzuki, H., "Representing Background Information for
Product Description to Support Product Development Process," Annals of
the CIRP, Vol. 44, No. 1, pp. 113-116, 1995.

[KUMA95] Kumar, H. S. and Krishnamoorthy, C. S., "A Framework for Case-Based
Reasoning in Engineering Design," Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, Vol. 9, No. 3, pp. 161-182, 1995.

[KUSI95] Kusiak, A. and N., L., "Decomposition and Representation Methods in
Mechanical Design," Journal of Mechanical Design, Vol. 117B, June, pp.
17-24, 1995.

[MACC90] MacCallum, K. J., "Does Intelligent CAD Exist?," Artificial Intelligence in
Engineering, Vol. 5, No. 2, pp. 55-64, 1990.

[MAHE95] Maher, M. L., Balachandran, M. B. and Zhang, D. M., Case-Based
Reasoning in Design, 1 ed., Lawrence Erlbaum Associates, Inc.,
Publishers, New Jersey, 1995.

[MARC88] Marcus, S., Stout, J. and McDermott, J., "VT: An Expert Elevator Designer
That Uses Knowledge-Based Backtracking," AI Magazine, Vol. 9, No. 1,
pp. 95-112,1988.

[MAS095] Masood, S. H. and Lim, B. S., "Concurrent Intelligent Rapid Prototyping
Environment," Journal of Intelligent Manufacturing, Vol. 6, No. 5, pp.
291-310, 1995.

[MAYE88] Mayer, A. K. and Lu, S. C.-Y., "An AI-Based Approach for the Integration
of Multiple Source of Knowledge to Aid Engineering Design," ASME
Journal of Mechanisms, Transmissions, and Automation in Design, Vol.
110, No. 3, pp. 316-323, 1988.

[MESS94] Messimer, S. L. and Henshaw, J., "Composites Design and Manufacturing
Assistant," Int. J. of Materials and Product Technology, Vol. 9, No. 1/2/3,
pp.105-115, 1994.

[MITT86] Mittal, S., Dym, C. L. and Morjaria, M., "PRIDE: An Expert System for
the Design of Paper Handling Systems," IEEE Computer, Vol. 19, No. 7,
pp. 102-114,1986.

[OXMA93] Oxman, R. E. and M., O. R., "Remembrance of Things Past: Design
Precedents in Libraries," Automation in Construction, Vol. 2, pp. 21-29,
1993.

[PACK94] Packer, S. M. and Epstein, R. A., "Knowledge Based Engineering of Mold
Transport Substructure at Sikorsky Aircraft," Annual Forum Proceedings -
American Helicopter Society, Vol. 2, No. 1, pp. 709-718, 1994.

90

[RÜT88] Riitahuhta, A., "Systematic Engineering Design and Use of an Expert
System in Boiler Plant Design," Proc. ICED International Conference on
Engineering Design, Budapest, Hungary, pp. 95-110, 1988.

[RODE93] Roderman, S. and Tsatsoullis, C, "PANDA: A Case-Based System to Aid
Novice Designers," Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, Vol. 7, No. 2, pp. 125-133, 1993.

[RODR94] Rodriguez, J. and Hart, P., "Preliminary Shape Definition of Structural
Components Using a Prototype Knowledge-Based Expert System,"
Engineering with Computers, Vol. 11, No. 2, pp. 103-113, 1994.

[ROGE95] Rogers, K. J., Priest, J. W. and Haddock, G., "The Use of Semantic
Networks to Support Concurrent Engineering in Semiconductor Product
Development," Journal of Intelligent Manufacturing, Vol. 6, No. 5, pp.
311-319,1995.

[ROSE94] Rosenman, M. A., Gero, J. S. and Maher, M. L., "Knowledge-Based
Design Research at the Key Centre of Design Computing," Automation in
Construction, Vol. 3, No. 2, pp. 229-237, 1994.

[ROY95] Roy, U., Balaji, B., Sarathy, S. and Graham, P., "Development of an
Intelligent Product Design System: Integration Strategies," Applied
Artificial Intelligence, Vol. 9, No. 6, pp. 563-585, 1995.

[SCHE93] Scherer, R. J. and Katranuschkov, P., "Architecture of an Object-Oriented
Product Model Prototype for Integrated Building Design," Proc. of the 5th
International Conference on Computing in Civil and Building Engineering,
ASCE, Anaheim, CA, Vol. ICCCBE, pp. 393-400, 1993.

[SHAH95] Shah, J. J. and Mantyla, M., Parametric and Feature-Based CAD/CAM:
Concepts, Techniques, Applications, 1 ed., John Wiley & Sons, New York,
1995.

[SOB091] Sobolewski, M., Object-Oriented Knowledge Bases in Engineering
Applications, Concurrent Engineering Research Center, West Virginia
University, Technical Report Research Note, CERC-TR-RN-91-013,1991.

[SRIA86] Sriram, D., "DESTINY: A Model for Integrated Structural Design,"
Artificial Intelligence in Design, Vol. 1, No. 2, pp. 109-116, 1986.

[STEI92] Steinberg, L. I., "Design as Top-Down Refinement Plus Constrain
Propogation," Artificial Intelligence in Engineering Design, Academic
Press, Inc., San Diego, CA, pp. 251-272, 1992.

91

[SYCA92] Sycara, K. and Navinchandra, D., "Retrieval Strategies in a Case-Based
Design System," Artificial Intelligence in Engineering Design, Academic
Press, San Diego, pp. 145-163, 1992.

[THOM95] Thomas, C. and Rozenblit, J. W., "Projection-Based Knowledge
Representation for Concurrent Engineering," Proc. 1995 IEEE
International Conference on Systems, Man and Cybernetics, IEEE,
Vancouver, British Columbia, Vol. 5, pp. 3863-3868,1995.

[VENK86] Venkatasubramanian, V. and Chen, C. F., "A Blackboard Architecture for
Plastics Design," Artificial Intelligence in Engineering, Vol. 1, No. 2, pp.
117-122,1986.

[YAGI91] Yagiu, T., Modeling Design Objects and Processes, 1 ed., Springer-Verlag,
Berlin, 1991.

[YEH96] Yeh, S., Kamran, M., Terry, J. and Nnaji, B. O., "A Design Advisor for
Sheet Metal Fabrication," HE Transactions, Vol. 28, No. 1, pp. 1-10, 1996.

